MODI, Smart IoT/Robotic Modules, Kickstarted

“JUST CONNECT.” LUXROBO wants you to simply connect its MODI modules to create an IoT or robotic device in seconds. MODI is a set of cube-shaped modules that LUXROBO launched on Kickstarter.com on October 14th.  It has already reached its funding goal of $30,000 in less than three days. With MODI, you can quickly and easily create devices like a theft detector, an RC car, a mini Segway and much more.

MODI comes with 13 different modules. They are color-coded into three different types: Input, Output and Setup. LUXROBO plans to add numerous other modules to its line-up soon. To take a full advantage of your MODI modules, you would customize the interactions among the modules through MODI Studio, LUXROBO’s simple graphic coding tool. You just need to drag and drop the commands. You can also convert the graphic coding into C Language (with other languages to be added) instantly.

The first thing you notice about MODI is its simple, elegant, minimalist design. You may also be surprised to see how small the modules are, only about 2.5 cm wide and long, and 1.5 cm tall. In such a compact dimension, LUXROBO has packed in PCB, MCU and its unique magnetic connection mechanism, in addition to the apparatus that supports each module’s unique function. Taking advantage of each module’s MCU, each MODI comes with MODI OS embedded. This feature enables each module to do its own processing and store memory. Each MODI is a smart module. One of the many benefits is MODI modules do not need to be connected to a PC or some other form of a master system to function on their own.

Putting MODI modules together is a pure joy. Each module’s four sides are all equipped for MODI’s unique magnetic connection. When placed close to another module, a pair of magnetic prongs come out slightly to form a tight and secure magnetic connection with the other. It is a lot of fun to try the automatic magnet connection over and over. Another advantage of MODI is its compatibility with Lego blocks. You can easily recycle the Legos or Lego-compatible blocks that you may have stored away to build a nice housing to your MODI devices.

LUXROBO aims to make IoT and robotic technologies more accessible for everyone, and that goal is captured in their vision of “Robotics of Things.” With its Kickstarter campaign, LUXROBO has taken a big step towards its vision of Robotics of Things. Until November 22nd, you can back LUXROBO and get MODI modules at approximately 40% off the estimated prices.

About LUXROBO:

LUXROBO’s roots are in robots. The founding team and core R&D members studied robotics together in college and have entered and won numerous international robot competitions together. LUXROBO was founded with the vision “Robotics of Things,” making robotic and IoT devices readily accessible for everyone.

LUXROBO is young and fearless. It was founded while its core members were still in college. It had no fear in developing its own OS for MODI and its own SW coding tool in MODI Studio. Even with MODI still in development and with no revenue stream to show, LUXROBO has been honored and recognized as one of Korea’s top technology-based startups, including being awarded Top11 at this year’s Echelon Asia Summit.

LUXROBO is ready for next big steps and challenges. LUXROBO has supplemented its young talents with experienced engineers and marketers from Samsung Electronics. With the Kickstarter campaign under way and supply of MODI modules to the UK soon to follow, LUXROBO is ready for a take-off.

Kickstarter Campaign:

https://www.kickstarter.com/projects/luxrobo/modi-create-anything-you-want-with-robotics-of-thi

Harvard University Based Startup Launches New Robot, Root, That Teaches Anyone To Code

All ages and skill levels can learn coding in an intuitive, interactive way.

 CAMBRIDGE, Mass. October 26, 2016 – Scansorial, a startup emerging from Harvard University, is on a mission to bridge the coding gap with the launch of their newest invention, Root: a fun, easy-to-use robot which teaches coding to anyone ages four to 99. Root has over 50 sensors and actuators with which it can draw, erase, play music, explore its world, and even defy gravity by using magnetism to drive on wall mounted whiteboards — making coding activities applicable to a range of topics, social, and way more cool.

With its interactive nature and easy setup, Root is the perfect tool for learning from authentic coding experiences at home, with teachers in classrooms, and has a social platform to share programs around the world. Root appeals to children as young as four and grows with them as a familiar and consistent platform — offering years of learning opportunities rather than days. As their coding skills improve, they’ll advance from programming with a blocks-based graphical interface (a child can use it even before they know how to read) to programming with fully text-based languages like Swift, JavaScript, and Python.

Another thing that makes Root special is the interplay with iPad. Not only is it programmed from an iPad, with Root’s app the iPad sensors can be used to interact with Root in real-time (for instance, the iPad can be programmed to act as a steering wheel.) Programs can be modified even while they’re running which facilitates the real-time debugging of code as children flexibly pause, step through, or add instructions at any point. Root also promotes agent-based thinking by showing exactly what the robot sees on the iPad.

“We have a big problem in our country, nine out of 10 parents want their kids to learn computer science but only one out of 10 elementary schools actually teach it. This leaves 58 million kids stuck in the middle not knowing how to get a computer science education,” Zee Dubrovsky, CEO of Scansorial.

“We are thrilled to support Root as it heads out to change the world of education. iRobot is committed to STEM learning and excited to see one of our alumni carry this passion forward in a startup aimed at bringing robotics and programming into homes and classrooms.“ Colin Angle, CEO of iRobot.

About Scansorial, PBC

Founded in 2016, Scansorial is a Public Benefit Corporation on a mission to make coding accessible for learners of any age. Scansorial makes robots, apps, and curricula that allow people to instantly set up, create, and share interactive coding lessons. Robots are the best way to engage in the journey of learning how digital stuff really works. Scansorial is a privately-held company headquartered in Cambridge, MA.

Root Team

The Root team has over 50 years of collective experience in launching and building consumer products (iRobot, Sonos, Apple) and software/education services (Microsoft, Disney, PLTW, Harvard, MIT). This includes launching four coding robots (Create, Kilobot, AERobot, Multiplo), launching two graphical coding environments (MIT App Inventor, Minibloq), and launching three consumer robots (Roomba, Scooba, Looj).

It is now possible to pre-order Root exclusively through Kickstarter through November 30. A limited number are priced at $145 which is only a fraction of its retail value. With a pledge of only $10, the campaign will put that money aside for schools in need that can’t afford Root. For any backers with deeper pockets, a pledge of $10,000 will put 60 Roots in a school of their choice and the campaign will promote these backers as a School Hero. Follow #SchoolHero to see who out there will step up to the plate and join this cause.

Kickstarter page: http://kck.st/2exTJN8

Trending on Kickstarter: ‘MOTI’ is your personal robotic companion for building healthy habits

SAN FRANCISCO, CALIF. —  Emerging from an industry saturated with apps and wearables, San Francisco based startup MOTI (www.moti.io) is seeing tremendous support on Kickstarter, exceeding a goal of $50,000 within the first five days of launching. At 23 days left on the campaign, MOTI has over 700 backers, and has now released additional “stretch goals” for their little robot. These goals include adding a wild card color that backers can vote on, integrations with Fitbit, Evernote, and Google Calendar, as well as a new top secret feature – should the campaign reach $175,000.

 

Who is this little robot and why is everyone so intrigued by him? First, MOTI is a physically present smart companion for building better habits. The device combines insights from behavioral science, social robotics and human-centered design, and is built to learn and react to human beings’ psychological triggers with the purpose of getting them to start practicing healthy habits (such as jogging, hydrating, meditating, etc). Second, what makes him different is that unlike a standalone app, MOTI’s very physicality, presence, and emotional AI contributes to his ability to effectively influence behavior. Standing at just under three inches tall, MOTI acts as an ever-present environmental queue that is meant to interact with you in the moments and places where you would normally start forming your habit (i.e. your kitchen, your work desk, your yoga space,etc.).

 

The science and design behind MOTI’s habit-forming influence draws from the habit-loop theory, which explains that in order to build any habit, three things are required: a trigger, a routine, and a reward. To help you form your habit, MOTI supports all three things through a combination of lights, haptics, human-like intonations and other sounds. In order to have the best effect on behavior, MOTI is also designed to form a bond with the user, and his personality is continually adapting to the users’ needs.

 

“What we found in early research is that apps and wearables rely on data, graphs, and tracking for motivation,”  says Kayla Matheus, Inventor and Co-Founder of MOTI. “But we’re human – we need more than just numbers. We need our technology to understand how we work at a psychological and emotional level. That’s why MOTI isn’t another device – he’s your friend, or your cheerleader, or even your mom.”

 

Live demos are available today at BulletProof Bio-Hacking conference, and customers can now pledge an order for their own MOTI at http://kck.st/2d8NBu2 , on sale for $99 each and available in light grey, dark grey, and turquoise.  

 

About MOTI

MOTI is a behavior change company combining science and design to create transformative products that help people live better lives, one habit at a time. Established March 2015 in New York City, the company is led by Founder and CEO Kayla Matheus (Yale BA’11) and Founder/COO Laura Day (Vanderbilt BE’02, Harvard Business School MBA ‘09). MOTI is an alum of Google 30 Weeks and Highway1 Accelerators. Connect with MOTI via Facebook, Twitter, and Instagram (@habitMOTI) or visit www.moti.io to learn more.

Robo Wunderkind raises $500,000 and announces a new mobile application

Vienna, Austria, Sept. 20, 2016 — The Vienna-based hardware startup Robo Wunderkind, which develops modular programmable robots for young children, announced today a $500,000 funding round with participation from Arkley VC as lead investor, business angel Juergen Habichler, and the Austrian Federal Promotional Bank (AWS). The funding will go into the widening of their retail reach and the expansion into new markets. The plan is to build a worldwide distribution system and to give young customers from everywhere a chance to learn coding and robotics in a fun and simple way.

The startup already raised $250,000 from backers from 58 countries on Kickstarter in October 2015 and by now collaborated with more than 50 schools around the globe to bring Robo Wunderkind to the classroom. Its vision is to revolutionize the way children interact with technologies through developing educational hardware and software products.

 

Piotr Wasowski, Managing Partner of Arkley VC:

“I expect Robo Wunderkind to transform how our kids interact with technology. Even very young children will be able to learn the basic principles of programming, which are vital for their future careers and for understanding the world around them.”

 

Juergen Habichler, Business Angel:

Robo Wunderkind is the future of education. I have been looking for a long time to find a visionary team, which combines robotics with education. I strongly believe that Robo Wunderkind has the potential to become the education platform for kids, students as well as adults.

 

Today, the startup is also announcing its new application to remote control electronic devices: the Robo Play App. Its simple programming interface will allow users to easily create personalized virtual dashboards to control the robots they will build with Robo Wunderkind modules, remotely via Bluetooth or Wifi. In the next step, the team is going to make the Robo Play App compatible with other Internet of Things (IoT) devices, such as cameras, lights, motion and light sensors.

 

Rustem Akishbekov, co-founder and CEO at Robo Wunderkind:

“In the beginning, we wanted to create an interface that will allow even a 5-year old to control our robotics kit. Eventually, we created a platform that will allow us to expand our target audience and reach older users. With our app, everyone will be able to control their IoT devices with the help of a very intuitive and customizable app. The way our robots prepare young kids for the digital world of the 21st century, our app will open the world of IoT devices to everyone.”

Yuri Levin, Chief Design Officer:

“With the help of our user-friendly and intuitive design, we are making interaction with IoT devices seamless and accessible for the wider audience.”

 

Robo Play App is free and will work on both Android and iOS devices. It will be compatible with all Robo Wunderkind kits, which are already available for pre-orders on their website with shipping planned for later this year.

 

About Robo Wunderkind

Robo Wunderkind was founded by Rustem Akishbekov, who brought Anna Iarotska and Yuri Levin on board in 2013. The company is based in Vienna, Austria, and maintains an office in Shenzhen, China. In the last three years, the founders have gathered a team of passionate engineers and designers dedicated to the vision of making coding and robotics accessible to everyone. Their first product is an educational robot that syncs with intuitive mobile applications to help children understand the basics of programming. Robo Wunderkind was part of the world’s first and largest hardware accelerator HAX in 2014 and Finalist of TechCrunch Disrupt SF Startup Battlefield in 2015.

GadgetBox – Affordable, Open-Source Robotics for Children 9 – 15 years

The GadgetBox crowd-funding campaign runs until October 14th 2016 with a required minimum target of $50,000 US. You can help by making a contribution. More importantly, please spread the word to others who may wish to support.

GadgetBox is an educational robotics kit, which will enable children 9 – 15 years to participate in a variety of hands-on activities linked to Science, Technology, Engineering and Mathematics (STEM). Pre-university STEM education has been identified as one strategic approach to preparing children for active participation in the changing technology landscape.

The requirement for GadgetBox, became evident while using commercial educational robotics kits in pre-university STEM activities such as construction, programming, and operation of a simple robot.  Price, maintenance, availability, and support requirements were cited as key reasons why successful initiatives have failed to gain widespread traction and visibility.

 

GadgetBox was created to address these issues; specifically by:

  • selecting the smallest sub-set of components that could facilitate basic activities when supplemented with items/materials readily accessible to children;
  • selecting, where possible, components readily available in local hardware stores;
  • providing guideline(s) to adapt/re-use sensor/actuator elements from local e-waste;
  • programming using a smartphone instead of a computer

Campaign funds will allow Edubots Engineering to produce a minimum of 20 kits, while concurrently testing curriculum exercises, and developing learning activities for upcoming school trials and robotics workshops in early 2017.

“We want to test GadgetBox, alongside commercial educational robotics kits in 2017. To do so, we must replicate and distribute the prototype – that takes funds.” – Cathy Radix, Robotics in Education, Edubots Engineering

GadgetBox was created using Open Source Hardware and Software to minimise development time, but also to enable children to design, build, and share designs for GadgetBox accessories.

“Because we believe that there is always room for improvement, we anticipate further modifications to GadgetBox based on feedback from users.“— Jeevan Persad, Fasove, Edubots Engineering

The improved GadgetBox designs, and online support forums, will be available to the public by early 2018.

Crowd-funding Campaign: https://igg.me/at/gadget-box/x

Onion Launches the Omega2 to Bring Innovation to the Internet of Things (IoT)

July 29, 2016 – Onion announces the Omega2, the IoT development board aimed at bringing innovation back into the IoT space. The Omega2 launched on Kickstarter last week and is currently more than 1,100% funded, with 25 days left to go in the campaign. Campaign Link: https://www.kickstarter.com/projects/onion/omega2-5-iot-computer-with-wi-fi-powered-by-linux
IoT never really gained mainstream status. Most „smart“ products on the market are nothing more than ordinary products with a screen slapped on it. These products don’t bring true value, so as soon as the novelty factor wears off, consumers move on to try the next „smart“ thing. Innovation in IoT is driven not by the needs of the market, but by the need of product companies to create new products and turn a profit. To bring innovation to IoT, the products need to be repositioned to address real pain points in everyday life. Onion aims to do that with the Omega2 by making hardware development accessible so everyone can start solving problems in their lives with IoT technology.

„We created the Omega2 to be the most accessible hardware development board,“ says co-founder and CEO Boken Lin. „We do this in two ways, by making it extremely affordable, and by making it very beginner-friendly. There is always a risk involved with trying new things, and by reducing the price to starting at just $5, we hope to minimize that risk so more people can make the plunge. Making it beginner-friendly means that even users with no electronics experience can do something with the Omega2 on day one.“

With a myriad of hardware development boards already on the market, the Omega2 is uniquely positioned as having the advantages of single-board computers such as the Raspberry Pi as well as microcontrollers such as the Arduino. It is much smaller than the Raspberry Pi (less than ¼ the size), and it is much more power-efficient, yet at the same time, it is much more powerful and robust than the Arduino, allowing it to be used in applications such as video/audio streaming, etc.

Because the Omega2 runs Linux, and for inexperienced developers, developing on it will feel much like using a regular computer. An added advantage to supporting Linux is that the Omega2 supports many programming languages. This capability makes the Omega2 approachable for existing programmers who are new to hardware development, allowing them to build hardware projects with familiar languages and programming environments. Finally, for users with absolutely no experience in programming, the Omega2 integrates Node Red, a programming environment developed by IBM that allows users to program IoT devices by simply dragging and dropping block diagrams.

„Everything around us is becoming smart.“ says Lin. „It started out with the smartphone movement in 2006, and now everything from thermostats to televisions, from cars to light bulbs are becoming smart. We want to create the tools that give everyone the power to reinvent their environment. And that’s why we have worked so hard to make the Omega2 so simple and affordable for everyone.“

Onion is a startup that aims to create “The Invention Platform for the Internet of Things”, a collection of hardware and software development tools that simplifies the process of creating and manufacturing connected products. The company is based in Boston, Massachusetts, with operations in Toronto, Canada, and Shenzhen, China. Onion completed a very successful Kickstarter campaign last year to launch the first generation Omega. Onion is backed by Techstars, and went through their 2014 Winter program in Boston.

3D Printed Robot Arm for STEM Created by Idaho Startup

Boise, ID – Slant Robotics has launched a Kickstarter campaign for a 3D printed robot arm, LittleArm. LittleArm is low cost kit for teaching engineering and robotics to students in STEM courses.

 

The LittleArm began as a weekend project for Slant Robotics founder, Gabe Bentz. “I didn’t want to pay the 100-plus dollars for an existing arm kit,” said Bentz, “So, I did a little design and let my 3D printer do the work.”

Bentz eventually showed his creation to colleagues and friends in the area. Many asked him to make them one. But when several STEM teachers expressed interest in the arm for their classrooms Bentz decided to turn the kit into a product, at Slant Robotics.

Thanks to rapid prototyping techniques the LittleArm was ready for production within just a few weeks. It utilizes high strength metal-geared microservos, and is controlled with a standard Arduino Uno allowing it be programmed using graphical software such as Blockly. When connected to a computer, Slant has created a simple graphical app which allows the arm to be trained to execute a set of motions.

The entire project is open-source, allowing anyone to download the 3D designs and software and build their own LittleArm.

At the time of this release, the LittleArm Kickstarter campaign has passed the halfway point, after being live for just 2 days. Over the next few months the team at Slant Robotics will be developing software and producing teaching materials so that students and teachers can easily use the LittleArm when it arrives.

About Slant Robotics

Slant Robotics is a startup located in Boise, ID. Its mission to to develop consumer robots for the home, school and business. The LittleArm is the fourth product that Slant has released.

BuWizz – The one brick to steer them all

BuWizz is a high performance LEGO® compatible remote control system and battery, seeking to raise $50,000 on Kickstarter. Why we made BuWizz? The original LEGO® Power Functions control system allows lesser speed, power and agility than users would like to have for their models. Created as an enhancement to the existing LEGO® remote control system, BuWizz is better than anything available on the market until now. Paired over Bluetooth with an iOS or Android device, BuWizz brick is made to control the motors and lights of LEGO® Trains and LEGO Technic models. Besides motors to power movement, BuWizz users will be able to add light effects and other special functions to their models.

While one BuWizz brick can control up to four motors or lights, several bricks can be controlled in parallel, from either one or more smart devices. Users can control a huge model with 8, 12 or even more motors and lights. It’s perfect for having fun, like racing against each other using several cars. One BuWizz brick inside the model replaces 3 LEGO components: a battery box and two infrared receivers, while only occupying the space of two receivers.

Connected inside a LEGO model or train, BuWizz brick offers precise control and provides eight times more power than existing solutions. It operates in three speed modes, pushing any LEGO model to it’s limits in “Fast” mode. Until now, LEGO models were mostly limited to indoor use. With BuWizz they come alive, zoom around two times faster and are ready to defeat the most difficult outdoor terrains.

In a later announced stretch goal, BuWizz team will offer “Ludicrous” mode, the next generation of speed and power levels, which will dwarf even the currently highest-performance “Fast” mode.

Users will be able to write their own Apps to control BuWizz and integrate BuWizz into platforms of their choice, the communication protocol will be open.

The reason for success is design and clever engineering solutions, which made BuWizz powerful and simple to use. Several benefits of BuWizz are due to the embedded Li-ion battery, which provides power for hours of fun. BuWizz can be recharged with any Micro-USB charger. The App will alert users when power is running low. For extended play time, BuWizz can also be charged on the go, with a standard Powerbank charger.

The price of single brick will be $119. And shipping will begin in November.

WEBSITE – www.buwizz.com

http://www.buwizz.com/

THE KICKSTARTER CAMPAIGN  –

https://www.kickstarter.com/projects/973645257/789115000?token=eafeb608

SubPos Ranger: Indoor Positioning System

The SubPos Ranger is as an open source indoor positioning system to be used for robotics applications in the education and hobbyist markets. It has primarily been designed as a flexible radio frequency platform for experimenting and tinkering, that allows you to not only obtain positioning and perform distance measurements, it can also be used for passive motion detection as well as communication between embedded devices.

While there are many positioning systems on the market, the Ranger has been created to be extremely cost effective, easy to use and develop for. While other systems are usually locked down in one way or another, whether that be functionality or availability of source code, the Ranger is completely open and flexible. Perfect for the budding hobbyist to invent the next big thing.

The Ranger is fully operational and ready for manufacture, and a complete system can be had for $274AUD (~$210USD), which gives you 3D positioning in a room, as well as a receiver to output the position. Once set up, the system can give up to +-10cm of accuracy. Other options are also available to experiment with too, such as a cheaper option for two nodes to perform distance measurements and motion detection, or a Wi-Fi support add-on.

Key Features:
•        Supports 2D and 3D Positioning – not just x and y, but z also.
•        2.4GHz ISM Spectrum – supported worldwide.
•        Standards Compliant Hardware – supports 802.15.4 and can also utilise Zigbee or 6LoWPAN communication protocols.
•        Reconfigurable RF Chipset – enables many different 2.4GHz ISM applications.
•        Firmware Updates over USB – no need for any extra programming hardware.
•        Open Source Hardware and Software – hack, repurpose and play to your heart’s content.
•        Modular Design – the Ranger allow all sorts of connectivity options. You can connect it to anything such as a Raspberry Pi via USB or GPIO, Arduino or to your smartphone via Wi-Fi.
•        Low Level Raw Data and Parameters – access to all low level measurement data and parameter tweaks are available to discover interesting new applications (such as motion detection).
•        Node Position Calibration – get the position of nodes automatically; no manual fixed node measurements required.
•        9-Axis Accelerometer – the client expansion board contains a 9 axis accelerometer for increased positioning accuracy.

Board Image – https://cdn.hackaday.io/images/7007401465041329447.jpg
Client Image – https://cdn.hackaday.io/images/3158211465041337828.jpg

Old and new VEX IQ Chickens

Here are pictures and videos of the VEX IQ Chickens I built some time ago for VEX Worlds. You can see the progress from the first version to the latest version with colored parts.

These robot chickens can each be build out of one VEX IQ kit.
But if you add parts in other colors it looks more realistic.

It is moving using only one motor!
The program to make it move is really easy and a great start for robotic beginners.

2014-04-22 14.57.50 (Large)

20160402_002049 20160402_003535
20160402_002040