Dennis W. Hong presents RoMeLa

RoMeLa, the Robotics and Mechanisms Laboratory at Virginia Tech is currently working on „Robot Evolution Through Intelligent Design“. This means they are taking evolutionary inspired designs and try to adopted them to robotic purpose. Dennis W. Hong, PhD and his students have been creating a lot of really interesting new robots, for example three legged robots, snake like robots or humanoids (e.g. DARwIn). The talk from the TEDxNASA conference, Mr. Hong offers a short overview of their research.

By the way, if you’re wondering about that motto and how „evolution“ can meet „intelligent design“ here comes the answer. Hong tells us:

„Though it has both evolution and intelligent design in the sentence, it has nothing to do with either – „we“ push the boundaries and come up with the next generation robotics (robot evolution) through us doing rigorous research and designing them intelligently (intelligent design). I think it is a clever tag line for our lab.“

Six-Legged Walking Machines

Wheel based movements are well studied and have several advantages. They are simple, energy efficient and do need less expert knowledge. Nevertheless they are not the universal solution. Alternatives like flying, crawling or walking are often more suitable for a specific application but they are really hard do develop and even more hard in terms of usage.

One interesting approach of how to use legs by making usage of neuronal networks is shown by „Biologically inspired six-legged walking machine AMOS-WD06“ (Author: Poramate Manoonpong). This project shows an usage of a Hexapod that gets controlled by a neuronal network, how to set it up and how to train it. The results are quit awesome.

Another interesting example of leg usage is given by the A-Pod, a hexapod by Kare Halvorsen which mimics an ant. This black ant which is quite capable of doing natural looking maneuvers. It supports moments of its legs, head, thorax and abdomen, plus it has a claw to perform mobile manipulation. In special the high flexibility and maneuverability in addition to the possibility of mobile manipulation makes this project extremely interesting.