AGVs keep the PPE moving during the COVID-19 pandemic

St-Sulpice Switzerland, October 07, 2020 – The COVID-19 crisis has focussed public attention on the role that hospitals and healthcare professionals play in treating those infected by the virus. Working within strict social distancing guidelines and limited staff has strained the resources of some of the support staff including internal logistics suppliers.

This is why an increasing number of hospitals around the world are reaping the benefits of investment in automated guided vehicles (AGVs). 

A modern hospital or clinic handles a huge amount of internal transportation daily. A 200-bed hospital transports an average of six tons of materials per day over a total distance of about 60 km, while an 800-bed hospital can handle up to 27 tons of materials, covering a distance of about 800 km. By utilising an AGV logistics system these movements can be handled more efficiently, freeing up valuable resources for medical activities.

One hospital in Garbagnate Milanese, Italy, for example, employs AGVs to automate these processes. The 57,000 m2 facility has over 500 beds and the backend logistics are handled by 12 AGVs that transport goods to 147 reception stations throughout the hospital.

The quality of transport in healthcare is essential, in order to safeguard the integrity of the materials carried, ensuring a high level of hygiene and assuring the health of patients.  One company that has been supporting healthcare facilities automate their logistics since 2012 is Italy-based Oppent, with its EvoCart series of mobile robots, specifically developed for hospitals and medical centres. These vehicles can handle food, laundry, waste, sterilisation, pharmacy, and general supplies, including ensuring that vital personal protection equipment (PPE) is in the right places at the right time during the current pandemic. Oppent has managed handling in more than 20 healthcare facilities. 

Oppent’s bi-directional mobile robots have a programmable speed of 0.10 m/s to 2.0 m/s and respect the safety regulations ISO 3691-4. Their movements are controlled by Autonomous Navigation Technology (ANT®), by BlueBotics, which uses natural structures in the environment—such as walls or furniture—as references, to ensure each vehicle knows where exactly it is. This approach means an AGV installation does not require expensive infrastructure changes, such as inductive wires being laid in the floor, or triangulation reflectors on the walls, in order to navigate effectively. 

The AGVs are quickly installed with ANT® lab tool suite and modifications to routes are even simpler. As a result, installations are simple and economical to set up and maintain, whether a single automated guided vehicle or a large fleet. A specific built-in safety system using specific certified laser scanners can identify any obstacles along the path and adjust the movement of the vehicle, with the AGVs autonomously handling obstacles either by adapting their speed to avoid emergency situations (path following) or moving around them (obstacle avoidance).

======================

About BlueBotics

BlueBotics aims to become the reference in autonomous navigation with the mission to enable the mobility of vehicles for the automation in the professional use market.

The company is now active in two segments:

  • Industrial automation – BlueBotics proposes ANT®, its innovative navigation solution.
  • Service robotics – The company proposes engineering services based on its expertise in mobile robotics with standard platforms, feasibility studies, custom designs, and dedicated developments to enable new customer applications.

SqwaQ Wins AUVSI Xcellence Award for BVLOS Drone Communications Solution

DALLAS (PRWEB) OCTOBER 04, 2020

SqwaQ, a pioneering leader in air-to-ground (A2G) LTE connectivity that enables safe BVLOS drone flights, has been recognized by the AUVSI with a 2020 Xcellence Award for Technology & Innovation. Winners were selected from a pool of accomplished applicants across various categories.

“The AUVSI XCELLENCE Awards honor innovators with a demonstrated commitment to advancing autonomy, leading and promoting safe adoption of unmanned systems and developing programs that use these technologies to save lives and improve the human condition,” said Brian Wynne, president and CEO of AUVSI.

The SqwaQbox is the first carrier approved 4G/LTE modem for Airborne LTE Operations (ALO) that delivers robust, multi-redundant connectivity for safe BVLOS flights. The 270 gram device enables multiple cameras and sensors to stream video in real time with nationwide Command and Control (C2) of the aircraft. This provides the remote pilot with an in-the-cockpit experience that includes pilot view cameras, the capability to fly in controlled airspace, remote operation of ADSB or Mode-S transponders, voice communication to the remote air traffic control tower using aviation VHF radio, and more. The remote pilot can safely integrate with manned aircraft traffic and even take off or land at the world’s busiest airports. These capabilities, and more like it, are already patented by SqwaQ and part of a longer range roadmap that integrates unmanned traffic, rather than UTM segregation which is restrictive and not practical.

A major obstacle facing the UAS industry has been the ability to maintain command and control over long distances via a multi-redundant communication link that not only streams video and sensor data, but can pass muster with FAA safety requirements. SqwaQ understood this from the outset and manufactures the AS9100 Certified SqwaQbox to those aviation standards, with an eye toward additional FAA certifications that may become mandatory for all UASs the future.

Over the last ten years, the drone industry has been guided by robotics engineers and drone enthusiasts with little knowledge of FAA rules or FAR safety guidelines. This has led to challenging FAA authority over the airspace and ignoring aviation safety guidelines in hopes of allowing tens of thousands of flimsy drones to invade the safest airspace in the world. To the FAA this is a dangerous threat. SqwaQ technology is the missing component that resolves this conflict and integrates all connected aircraft in the sky, allowing safe integration of any properly built Remotely Piloted Aircraft.

Today in 2020, major aviation manufacturers are quietly designing their own Remotely Piloted Aircraft solutions with an eye toward full FAA type class certification and safety compliance. That’s not a Part 107 waiver or Part 135 exemption that restricts operations. It means passing a rigid safety certification like Boeing, Bell and Airbus routinely undertake with manned aircraft, to fly unfettered in the airspace and deliver value to customers that toy drones cannot achieve.

SqwaQ is engaged with many aviation manufacturing partners to lead the transformation to certified Remotely Piloted Aircraft. That RPA moniker will denote a real aircraft, flown freely across controlled airspace by a real pilot holding a conventional pilot certification and pedigree. SqwaQ anticipates that OEMs using its BVLOS technology may eliminate 75% of their competitors in the drone industry, as certified aircraft push out the flimsy toys being fobbed off, particularly in public safety.

First Day of Safety, Security and Rescue Robots 2010 (SSRR-2010)

Currently I’m participating at the workshop of Safety, Security and Rescue Robots 2010 in Bremen.

The first day is now gone and a lot of interesting talks have been given:

Tetsuya Kinugasa has shown a Flexible Displacement Sensor in his talk of „Measurement of Flexed Posture for Mono-tread Mobile Track Using New Flexible Displacement Sensor„. His group develops and uses this sensor to control the posture of a robot which is a combination of snake, worm and tank.

Jimmy Tran presented his works on „Canine Assisted Robot Deployment for Urban Search and Rescue„. The basic idea is as simple as brilliant, use a equipped dog to find victims and to inform operators about him. So, dogs are well used in rescue and they have a high mobility. They can easily overcome huge rubles and are able to carry video cameras or rescue material. So, his approach is to use the dogs to deploy a small robot next to a victim, which would allow to investigate medical status of the person. The idea is hilarious.

Development of leg-track hybrid locomotion to traverse loose slopes and irregular terrain“ is so far the most interesting technical approach of this workshop. It shows a way how a tracked like vehicle can be combined with a semi-Walker.

Donny Kurnia Sutantyo  presented his work on „Multi-Robot Searching Algorithm Using Levy Flight and Artificial Potential Field„, while Julian de Hoog showed a solution for team exploration in „Dynamic Team Hierarchies in Communication-Limited Multi-Robot Exploration“.

The invited speaker Bernardo Wagner showed the outcomes of his department. The Leibniz University of Hannover has worked intensively in the field of „Perception and Navigation with 3D Laser Range Data in Challenging Environments„.

Potential Field based Approach for Coordinate Exploration with a Multi-Robot Team“ is topic of Alessandro Renzaglia.

Bin Li showed another nice approach of a shape shifting robot. His robot is able to shape shift it self by rearranging its three motion segments. „Cooperative Reconfiguration between Two Specific Configurations for A Shape-shifting Robot

Jorge Bruno Silva presented a approach of trajectory planing while respecting time constrains in „Generating Trajectories With Temporal Constraints for an Autonomous Robot
Noritaka Sato closed the day by presenting novel a HMI approach for teleoperation. Instead of showing only the direct camera image his group uses temporal shifted images to generate an artificial bird eye view, like it is given in computer car games. „Teleoperation System Using Past Image Records Considering Moving Objects

I am looking forward to listen to the next talks.

Six-Legged Walking Machines

Wheel based movements are well studied and have several advantages. They are simple, energy efficient and do need less expert knowledge. Nevertheless they are not the universal solution. Alternatives like flying, crawling or walking are often more suitable for a specific application but they are really hard do develop and even more hard in terms of usage.

One interesting approach of how to use legs by making usage of neuronal networks is shown by „Biologically inspired six-legged walking machine AMOS-WD06“ (Author: Poramate Manoonpong). This project shows an usage of a Hexapod that gets controlled by a neuronal network, how to set it up and how to train it. The results are quit awesome.

Another interesting example of leg usage is given by the A-Pod, a hexapod by Kare Halvorsen which mimics an ant. This black ant which is quite capable of doing natural looking maneuvers. It supports moments of its legs, head, thorax and abdomen, plus it has a claw to perform mobile manipulation. In special the high flexibility and maneuverability in addition to the possibility of mobile manipulation makes this project extremely interesting.

RobotsBlog is alive

RobotsBlog is a new blog focusing on robot topics. It will included news, discussions, articles, and links around the wide field of robotic and AI.

We, the authors, are an international team of junior researchers and actively involved in robotics. And so we are every day seeing the challenging problems and extreme nice solutions and we will try to share as much as possible with you. Our hope is that this platform will help all of us to sort and structure the wide field of robotics a little bit so that other researchers, students and every interested person can maximize their personal benefit which are archival by robotics.

And now it is time to present you some of our previous work.

The first video is showing some test runs of an Unmanned Aerial Vehicle or for short UAV, which is currently tested by the Fraunhofer IAIS.

The second video shows a autonomous ground base robot using its docking station. The robot does base on a ProfiBot system and is searching autonomously for its docking station if it is needed. After finding it is performing a docking maneuver and charges it batteries.

The next video shows some tests results derived from a computer vision system that is used to detected character based landmarks in the environment. This behavior was needed to participated at the SICK robot day 2009 which we succesfully have done.

So thats all for the starting, new updates are coming and we hope to see you soon again.