Go-to-Automationsanwendungen für einen schnellen ROI

Wie Sie Kosten senken und die Vorteile der Automationsklassiker Pick & Place, Prüfen und Dosieren am besten für sich nutzen

Autor: Alexander Mühlens, Geschäftsbereichsleiter Low Cost Automation bei der igus GmbH

Aus der Industrie sind Roboter schon lange nicht mehr wegzudenken – ob als Maschinenbestücker, Qualitätsprüfer oder Montagehelfer. Doch viele kleinere und mittelständischen Unternehmen (KMU) drohen ins Hintertreffen zu geraten. Denn oft wissen Sie garnicht, wo sie anfangen sollen. Welche Anwendungen lassen sich überhaupt automatisieren? Und häufig scheinen die Investitionskosten zu hoch und die Integration und Bedienung zu komplex.

Abbildung 1: Ob dosieren, picken oder prüfen – es Bedarf etwas Vorstellungskraft und preiswerte Robotik-Komponenten, um mit Automatisierungsprojekten zu starten. (Quelle: igus GmbH)

Picken, dosieren, schleifen oder prüfen: Es gibt eine Vielzahl an monotonen, repetitiven und anstrengenden Arbeiten, die sich einfach automatisieren lassen. Doch sich nur einen Roboter anzuschaffen, führt am Ende leider zu keiner Lösung. Am Ende muss das gesamte System aus Roboter und Komponenten wie Vision-Systeme, Greifer und Sensoren funktionieren. Doch insbesondere KMU wissen häufig nicht, wo sie nach einer Lösung suchen sollen und wie die passende Lösung überhaupt aussieht. Außerdem ist es wichtig, nicht zu komplex anzufangen. Der herstellerneutraler Robotik-Marktplatz RBTX hilft Automatisierungswilligen dabei, die einfachste und kostengünstigste, funktionierende Lösung zu finden.

Über 400 Komplettlösungen aus der Praxis

Das Besondere: Interessierte finden auf dem Marktplatz nicht nur Roboter und Einzelkomponenten, sondern Einblick wie es andere machen. Als Inspirationsquelle zum sofortigen Nachmachen finden sich online über 400 sofort adaptierbare Automatisierungsprojekte aus der Praxis. Von der automatisierten Regenwurmfarm über einen Berliner-Picker bis hin zum Agrarroboter, der Unkraut erkennt und vernichtet. Mehrere tausend KMU aus aller Welt haben auf RBTX.com bereits ohne konstruktionstechnische Vorkenntnisse Automationslösungen realisiert. 95 Prozent dieser Komplettlösungen sind für unter 12.000 Euro erhältlich. Die Low-Cost-Lösungen amortisieren sich nachweislich bereits ab 3-12 Monaten. Zu den Hauptanwendungsbereichen zählen unter anderem Pick & Place-Aufgaben, die Qualitätsprüfung sowie Klebe- und Dosieranwendungen.

Effizientes Handling von Produkten mit Pick & Place-Robotern

Ein Pick & Place-Roboter befördert ein Objekt zuverlässig von A nach B. Häufig handelt es sich dabei um wiederholende und zeitfressende Tätigkeiten, die viel Optimierungspotenzial innerhalb einer Produktion bieten. Ob bei der Maschinenbestückung, Palettierung, Sortierung oder Vormontage. Die Vorteile von Low Cost-Roboterlösungen haben einen Automatisierungstrend in Branchen wie Landwirtschaft, Lebensmittelindustrie, Medizintechnik bis hin zum Handwerk ausgelöst. Pick & Place-Systeme finden sich vor allem zunehmend in alltäglichen Endkunden-Anwendungen, zum Beispiel in Verkaufsautomaten.

Verschiedene Robotertypen wie Gelenkarm-, Delta- oder Portalroboter können die unterschiedlichsten Anwendungsszenarios realisieren. So kommen Portalroboter zum Beispiel für das Greifen von Medikamenten zum Einsatz, um sie zur Ausgabe zu befördern, während ein SCARA Roboter als „Labor-Assistent“ das sichere Aufnehmen und Ablegen von Reagenzgläsern übernimmt – und das bereits für 7.820 Euro. Der Vorteil der Roboter-Systeme: Sie nehmen Bauteile präzise und mit konstanter Qualität auf und setzen sie am gewünschten Ablageort ab.  Die Vorgänge sind exakt wiederholbar.

Automatisierte Qualitätsprüfung für mehr Präzision und Planbarkeit

Mit einer automatisierten Qualitätskontrolle lassen sich repetitive Prüfvorgänge effizient und präzise durchführen. Die Einsatzszenarien von Prüfrobotern sind so unterschiedlich und individuell wie die zu automatisierenden Arbeitsvorgänge. Ob Oberflächenprüfung, Maßprüfung oder Funktionsprüfung – Prüfprozesse und -merkmale unterscheiden sich in der Praxis stark. Mithilfe von RBTX wurde beispielsweise ein Robotersystem für das automatisierte Be- und Entladen einer Prüfstation für Leiterplatinen konfiguriert.

Ebenso ein Flächenportal, das mithilfe einer Kamera einzelne Uhren ansteuert, um visuell zu prüfen, ob sich Minuten- und Sekundenzeiger bewegen. Ein Roboterarm kommt unter anderem auch bei der End-of-Line-Prüfung von Ladegeräten für Elektrofahrzeuge zum Einsatz. Prüfprozesse lassen sich durch den Einsatz von Robotern effizient verschlanken und besser planen. Darüber hinaus arbeiten Roboter rund um die Uhr ohne Qualitätseinbußen. Es werden identische Vorgänge und eine präzise, gleichbleibende Messung des Prüfmerkmals sichergestellt.

Sicher kleben und dosieren – ohne Materialverschwendung

Neben Prüf- und Pick & Place-Aufgaben kann auch das Auftragen von Klebe-, Versiegelungs-, Lackiermitteln und Isolierschäumen effizient automatisiert werden. Meistens geht es darum Materialverschwendung zu vermeiden und präziser zu kleben bzw. zu dispensieren. Und dafür benötigt man keinen Roboter mit Investitionskosten im 6-stelligen Bereich. Mit Low Cost-Robotern kann fast alles verklebt werden. Sie erreichen eine Präzision von ca. 0,5 mm. Ein weiterer Grund ist die Arbeitsplatzsicherheit. Denn der Roboter kann problemlos mit Chemikalien in Berührung kommen und unterstützt bei unergonomischen Arbeiten. Vor allem Klebeprozesse an kleinen Werkstücken, erfordern ein hohes Maß an Konzentration und Präzision. Dabei ist es häufig wichtig, dass der Kleber das Bauteil exakt abdichtet. Dort liegt die Automation durch Roboter nah. Mithilfe von RBTX konnte zum Beispiel ein Kunde durch den Einsatz eines automatischen Dosierroboters die Geschwindigkeit beim Auftragen von Dichtungsmasse auf ein Metallteil, einem wichtigen Arbeitsschritt in seiner Produktion, vervierfachen. Die einfache Handhabung der Maschine ermöglicht es selbst ungeschulten Mitarbeitern, den Roboter sofort zu nutzen.

Für das Kleben und Dosieren lassen sich je nach Anwendung verschiedenste Robotersysteme einsetzen. Mithilfe eines eigenen Dosierroboter-Konfigurators können Anwender in nur wenigen Klicks eine individuelle Roboterlösung zusammenstellen, die präzise Klebe- und Dosiervorgänge automatisiert.

Wer noch nach Inspiration sucht, findet auf RBTX.com alle Anwendungsbeispiele aus der Praxis: https://rbtx.com/de-DE/solutions

RBTX ist eine eingetragene Marke der igus GmbH.

Moley Robotics Unveils World’s First Luxury Robot Kitchen Showroom in London

London, 15th December 2024 – Moley Robotics, a pioneer in culinary automation, is proud to announce the grand opening of the world’s first luxury robot kitchen showroom in the heart of London. This revolutionary space, located at 16 Wigmore Street, marks a significant milestone in the fusion of technology and gastronomy, offering visitors a first-hand experience of the future of automated cooking that is set to revolutionise the culinary landscape.

An Immersive Culinary Journey

The showroom is a testament to Moley Robotics‘ commitment to transforming the way we think about and engage with cooking. Stepping into this cutting-edge showroom is like entering a realm where culinary dreams meet technological prowess. The showroom has been meticulously designed to provide an immersive and interactive experience, showcasing the advanced cooking capabilities of the Moley Robotic kitchens and distinctive kitchen designs, crafted from premium materials including Glacier White Corian, Patagonian marble and high gloss Eucalyptus wood panels.

Visitors will be captivated by the graceful human-like movements of the robotic arms as they seamlessly prepare gourmet meals in the state-of-the-art kitchen, equipped exclusively with premium appliances from globally renowned brands such as Siemens, Gaggenau, and Miele. The latest advancements in robotics and artificial intelligence, demonstrate the unparalleled precision and versatility of the Moley system. The showroom aims to transport visitors into the future of home cooking, where efficiency, elegance, and innovation converge.

Unveiling the Future of Home Cooking

The centrepiece of the showroom are, of course, the Moley Robotic kitchens; Chef’s Table, X-Air and A-Air. Visitors will have the opportunity to witness live demonstrations of the robotic arms in action, showcasing the system’s ability to faithfully replicate recipes from an extensive library curated by world-renowned chefs including three-Michelin-starred Andreas Caminada, MasterChef winner Tim Anderson, Award-winning Andrew Clarke and sushi Grandmaster Kiichi Okabe. From delicate stirring to precise seasoning, the robotic arms perform each task with a level of skill and dexterity previously reserved for the most accomplished chefs.

„We are thrilled to open the doors to the world’s first luxury robot kitchen showroom in London,“ said Mark Oleynik, CEO of Moley Robotics. „This space is not just a showcase of our technology; it’s an invitation for people to experience first-hand the future of home cooking. The Moley Robotic Kitchen is a game-changer, and this showroom is the perfect platform to share our vision with the world.“

A Gourmet Experience for All

The luxury showroom isn’t just about awe-inspiring technology; it’s about making gourmet experiences accessible to everyone. The Moley Robotic Kitchen is designed to cater to a wide range of culinary preferences and dietary needs. Visitors can explore the user-friendly interface, customise recipes, and witness the system adapt to individual preferences, showcasing the versatility that makes Moley Robotics the leaders in the world of culinary robotics.

Additionally, the showroom will host live cooking events, allowing guests to taste the delicious creations prepared by the Moley Robotic Kitchen. This hands-on experience aims to bridge the gap between futuristic technology and the joy of savouring exquisite meals, reinforcing the idea that automation can enhance, rather than entirely replace, the human experience in the kitchen.

Innovating with Elegance

Beyond its technological marvels, the luxury showroom reflects Moley Robotics‘ commitment to design and aesthetics which have been forged by a fruitful five-year collaboration with the renowned Italian design house, Minotti Collezioni. The Moley Robotic Kitchen seamlessly integrates into modern kitchen spaces, and the showroom itself is a testament to the marriage of innovation and elegance. The sleek, contemporary design of the kitchen setup and the overall ambiance of the space create an environment that is both inviting and forward-thinking.

„As we open the world’s first luxury robot kitchen showroom, we’re not just unveiling a product; we’re introducing a lifestyle—a future where technology elevates our culinary experiences,“ added Mark Oleynik. „Our goal is to inspire and empower individuals to reimagine their relationship with cooking.“

Visit Us Today

The Moley Robotics luxury robot kitchen showroom is located at 16 Wigmore Street, London, W1U 2RF in London and is open to the public by appointment starting 15th December. Visitors are invited to make an appointment on the Moley Website and explore the future of home cooking, witness live demonstrations, and immerse themselves in a culinary experience like no other. For more information, visit moley.com.

About Moley Robotics:

Moley Robotics is a leading innovator in the field of culinary automation, dedicated to redefining the way we approach cooking at home. With a focus on precision, convenience, and elegance, Moley Robotics is at the forefront of the integration of robotics and artificial intelligence in the kitchen.


Moley Robotics Kitchen Demo Studio

16 Wigmore Street, London, W1U 2RF

Qviro Helps Robotics Buyers Make Transparent Choices with Biggest Marketplace

Qviro Revolutionizes Robotics Buying Experience

Qviro, one of the leading robotics platforms, introduces a groundbreaking marketplace, offering unparalleled transparency and choice. Users can effortlessly compare the full robotics market and access a vast selection of 211 cobots

The platform ensures transparent pricing, allowing buyers access to all cobot prices on Qviro. For added assistance, it provides an average cobot price of €27,158. Additionally, Qviro includes 400+ user reviews for informed decisions.

In the cobot category, Universal Robots leads with a 4.6 rating from over 41 user reviews. Their products excel in ease of use and integration, favored by engineers and enthusiasts.

For budget-conscious buyers, Elephant Robotics and Wlkata offer educational robots starting at $599. They provide cost-effective solutions for educational and hobbyist projects. Find Elephant Robotics‘ products at Elephant Robotics Products and Wlkata’s at Wlkata Products.

Sven De Donder, Co-CEO of Qviro, said, „Our user base in Europe and North America is growing exponentially due to unmatched transparency.“

Qviro transforms the robotics buying experience, offering an all-in-one solution for enthusiasts and professionals. With diverse options, transparent pricing, and a supportive user community, Qviro meets all your robotics needs.

About Qviro:

Qviro is a Belgium-based startup that is revolutionising the procurement process of industrial technology such as robots and machines through digitization. The company’s review platform, Qviro.com, provides factories and engineers with valuable insights and customer feedback to make confident purchasing decisions. At the same time, it offers vendors market intelligence and data to help them better understand their potential customers. As a SaaS platform, Qviro is dedicated to providing exceptional customer experiences and innovative solutions that drive growth and progress in the industry. To learn more about Qviro, visit www.Qviro.com.

Amazing Advancements in Soft Robotics

Soft robotics represents a groundbreaking advancement in the field, standing apart from the rigid structures people usually associate with traditional robotic systems. Learn more about recent advances in this field and the many benefits.

The Era of Soft Robots

Nature and biology heavily influence soft robots, giving them the flexibility and ability to adapt to their surroundings. For example, some commercially available soft robotic designs mimic fish, octopi and worms.

Innovative materials such as shape-memory alloys, dielectric elastomers and liquid crystal elastomers are critical to soft robotics. These materials change their properties in response to various stimuli. Grippers on soft robots, made of high-tech elastomers, mold to the target object’s shape. This flexibility ensures a gentler and more adaptable grip than rigid robots, making them ideal for tasks like fruit picking. 

Soft robots also use self-healing materials made from shape-memory alloys. These alloys allow the robots to repair themselves after damage, increasing their operational life span and reducing maintenance needs.

As technology progresses, scientists outfit soft robots with sensory systems, enhancing their ability to understand their surroundings. For example, soft pressure sensors can tell a robot if it’s gripping too hard. Some researchers are even developing soft robots capable of working in swarms, emulating the behavior of fish, bees and birds. 

3D printing, a form of advanced manufacturing, has revolutionized how scientists design and produce intricate soft robotic parts, driving innovation and accessibility in this sector. Some robots incorporate the strengths of both rigid and soft systems, resulting in hybrids that offer improved strength, precision and flexibility. Instead of traditional motors, there’s a growing trend towards fluidic actuation. Robots use liquids or air for movement, making their movements more natural. 

Soft Robotics in Medicine

Robotics is revolutionizing various aspects of modern medicine. In rehabilitation and physiotherapy, soft robotic exosuits or exoskeletons support patients recovering from strokes, spinal cord injuries or surgeries. These devices gently guide and assist patients, helping them regain motor functions, relearn movements and restore strength.

In assistive medical devices, soft wearable robots are emerging to help those with mobility issues. The Wyss Institute at Harvard University developed a soft, wearable robotic glove that assists individuals with hand disabilities in performing day-to-day activities. This glove, made from soft elastomers, can assist in gripping objects, potentially improving rehabilitation outcomes.

Scientists at the City University of Hong Kong developed a soft robot capable of maneuvering inside the stomach and intestine. The robot can change shape and size, facilitating better imaging and allowing localized drug delivery or biopsies.

A collaboration between Boston Children’s Hospital and Harvard University resulted in a soft robotic sleeve that surgeons can place around the heart. This device helps the heart pump more efficiently in patients with heart failure, providing a potential alternative to organ transplants.

In diagnostics, soft robots simplify procedures like endoscopy, making it less invasive and patient-friendly. Patients can now swallow endoscopy capsules equipped with a camera and a tissue collection mechanism to get the same results traditionally obtained by putting patients under general anesthesia. 

Research teams at institutes like the Sant’Anna School of Advanced Studies in Italy have been working on developing soft robotic arms that can assist surgeons. Due to their soft and pliant design, these arms can navigate the body with minimal risk of damaging tissues or organs.

Soft Robotics in Marine Conservation

Equipped with sensors, soft robots can monitor water quality, track marine species and evaluate the health of habitats over prolonged periods. Their non-intrusive nature and versatility enable them to probe areas inaccessible to traditional robots. MIT’s Computer Science and Artificial Intelligence Laboratory developed a soft robotic fish named „SoFi“ that can swim naturally in the ocean, recording close-up videos of marine life and providing insights without alarming or disturbing the aquatic life.

Soft robots also offer the potential for marine clean-up efforts, such as removing pollutants like microplastics and oil spills. The WasteShark, developed by RanMarine Technology, is an ASV designed to „eat“ or collect trash in harbors and other waters close to the shore. This drone skims the water’s surface, collecting waste in its path, thereby aiding in marine clean-up.

The Ocean Exploration Trust’s E/V Nautilus expeditions have been using ROVs to explore and map uncharted coral reefs, helping scientists understand their structures, the species they harbor and their overall health. Similar soft robots can be deployed to plant sea grass and maintain coral reefs. 

ROVs like the Hercules, also from the E/V Nautilus expedition, have robotic arms that can collect geological and biological samples from the deep sea that can help scientists study ecosystems in abyssal regions, leading to new species discoveries and insights into deep-sea conservation needs.

The Challenges Ahead

Soft robotics faces challenges, but its vast potential is undeniable. A primary focus lies in developing innovative materials that combine durability, flexibility and responsiveness. While traditional actuators, like motors, aren’t suitable for soft robots, alternatives like pneumatic and hydraulic systems are on the rise, promising unparalleled autonomy.

Manufacturing these robots at scale is now more feasible due to advanced construction techniques and materials. Even as these robots retain flexibility, integrating crucial rigid components, like batteries, is becoming smoother. The scientific community aims to enhance the response times of soft actuation mechanisms to match or exceed traditional systems.

Safety remains a top priority in soft robotics, especially in applications involving humans or medical scenarios. Although the field recognizes the higher initial research and production costs, they believe ongoing advancements will reduce expenses. 

Guest article by Ellie Gabel. Ellie is a writer living in Raleigh, NC. She's passionate about keeping up with the latest innovations in tech and science. She also works as an associate editor for Revolutionized.

Variobot VariAnt: The Robot Ant

The presence of robots in our modern environment is getting increasingly casual to see. Robots are progressing rapidly in terms of both their capabilities and the potential uses they have. Examples of this include self-driving automobiles and drones. The VariAnt, a robot created by Variobot, is another amazing example.

VariAnt: At the First Glance

VariAnt, a robot ant, moves and acts almost exactly like its biological model. It independently explores its environment using a sensor system to detect obstructions or markers. The Variobot programmable kit is appropriate for researchers who are passionate and young at heart.

Advanced Autonomy

Like the majority of living things, the variAnt adjusts to the surroundings by detecting relative brightness. Using a network of patented sensors is made feasible. The autonomous robot ant has light sensors connected to its body, legs, antennae, and jaw claws that can be positioned as needed.

A processor is housed on an Arduino-compatible nano board, which serves as the ant robot’s central processing unit (CPU). The small control unit provides connections for two motors, 12  analog sensors,  8 digital I/Os,  2 programmed buttons, 2 reed switches for step numbers, that may be used in any way, and 15 status LEDs that can be plugged in and switched as needed.

The state of the sensors, motors, and reed switches may all be indicated by the LEDs. Inside the ant’s head is a tiny circuit board that is equipped with plug-in ports, which enables the flexible combination and extension of environmental sensors.

The lithium-ion battery that comes standard with the variAnt has a run time of around 3  hours and can be recharged using the provided USB cord.

The Walking Mechanism

The robotic ant makes use of these to identify objects, lines, light sources, or shadows in its surroundings, and then either follows them or stays away from them in an intentional manner.

The purpose of the walking mechanism that was created and patented by Variobot is to mimic the natural mobility of an ant as closely as possible. This is doable with only 24 different components made of acrylic.

VariAnt: Best for

For individuals of all ages, the robot ant is also an engaging and entertaining toy. You can use this set to design your own robot to behave, move, and appear like an actual, but much bigger, ant. The robot is an interesting thing to watch due to its distinct motions and behaviors, and due to its size, it can be used in a number of scenarios. The variAnt kit costs around €199.

Conclusion

The VariAnt might revolutionize robotics and our understanding of nature. Since it mimics ants, the VariAnt can perform many tasks that conventional robots cannot. Whether employed for research, environmental monitoring, or as a toy, the VariAnt is a groundbreaking robotics innovation that will captivate people worldwide.

Robots-Blog.com at Automatica 2023

Build Your Own Voice Assistant with CircuitMess Spencer: Your Talkative Friend

Voice assistants have become a crucial component of our everyday lives in today’s technologically sophisticated society. They assist us with work, respond to our inquiries, and even provide entertainment. Have you ever wondered how voice assistants operate or how to build your own? Spencer is here to satisfy your curiosity and provide a fun DIY activity, so stop searching. This blog post will introduce you to Spencer, a voice assistant that will brighten your day with jokes and provide you with all the information you need.

Meet Spencer

Spencer is a buddy that converses with you; it is more than simply a voice assistant. It can hear you well enough to comprehend all you say. It uses its large red button as a trigger to search the internet and give you straightforward answers. It’s a wonderful addition to your everyday routine because of Spencer’s endearing nature and capacity to make you grin.

Spencer’s Features: Your Interactive Voice Assistant Companion

1. Voice Interaction

High-quality audio communication is possible because of Spencer’s microphone. It comprehends your instructions, inquiries, and chats and offers a simple and straightforward approach for you to communicate with your voice assistant. Simply talk to Spencer, and it will answer as you would expect, giving the impression that you are conversing with a genuine friend.

2. Internet Connectivity and Information Retrieval

Spencer has internet access, allowing you to access a huge information base. You may have Spencer do a real-time internet search by pushing the huge red button on his chest. Spencer can search the web and provide you clear, succinct answers, whether you need to discover the solution to a trivia question, check the most recent news headlines, or collect information on a certain issue.

3. Personalization and Customization

Being wholly original is what Spencer is all about. You are allowed to alter its features and reactions to fit your tastes. Make Spencer reflect your style and personality by altering its external elements, such as colors, decals, or even adding accessories. To further create a genuinely customized experience, you may alter its reactions, jokes, and interactions to suit your sense of humor and personal tastes.

4. Entertainment and Engagement

Spencer is aware of how important laughing is to life. It has built-in jokes and amusing replies, so talking to your voice assistant is not only educational but also interesting and fun. Spencer’s amusing features will keep you entertained and involved whether you need a quick pick-me-up or want to have a good time with friends and family.

5. Learning and Educational STEM Experience

In particular, STEM (science, technology, engineering, and mathematics) subjects are the focus of Spencer’s educational mission. You will learn useful skills in electronics, soldering, component assembly, and circuits by making Spencer. To further develop Spencer’s talents, you may go into programming, gaining practical experience with coding and computational thinking.

6. Inspiration and Creativity

Spencer acts as a springboard to spark your imagination and motivate further investigation. You may let your creativity run wild as you put together and customize your voice assistant. This do-it-yourself project promotes critical thinking, problem-solving, and invention, developing a creative and innovative mentality that may go beyond the context of making Spencer.

Recommended Age Group

Spencer is intended for those who are at least 11 years old. While the majority of the assembly procedures are simple, some, like soldering and tightening fasteners, call for prudence. Never be afraid to seek an adult for help if you need it. When using certain equipment and approaches, it is usually preferable to be guided.

Assembly Time Required

The construction of Spencer should take, on average, 4 hours to finish. However, take in mind that the timeframe may change based on your prior knowledge and expertise. Don’t worry if you’re unfamiliar with electronics! Enjoy the process, take your time, and don’t let any early difficulties get you down. You’ll grow more used to the procedures as you go along.

Skills Required

To start this DIY project, no special skills are needed. Fun and learning something new are the key goals. Your introduction to the field of electronics via Building Spencer will pique your interest in STEM fields and provide you the chance to get hands-on experience. Consider completing this assignment as the first step towards a lucrative engineering career.

Pros and Cons of Spencer

Pros of Spencer

  • Spencer provides an engaging and interactive experience, responding to voice commands and engaging in conversations to make you feel like you have a real companion.
  • With internet connectivity, Spencer can retrieve information in real-time, giving you quick answers to your questions and saving you time.
  • Spencer can be customized to reflect your style and preferences, allowing you to personalize its appearance, responses, and interactions.
  • Spencer comes with built-in jokes and entertaining responses, adding fun and amusement to your interactions with the voice assistant.
  • Building Spencer provides hands-on learning in electronics, soldering, circuitry, and programming, offering a valuable educational experience in STEM disciplines.

Cons of Spencer

  • The assembly process of Spencer may involve technical aspects such as soldering and component assembly, which can be challenging for beginners or individuals with limited experience.
  • Spencer heavily relies on internet connectivity to provide real-time answers and retrieve information, which means it may have limited functionality in areas with poor or no internet connection.
  • While Spencer offers basic voice assistant features, its capabilities may be more limited compared to advanced commercially available voice assistant devices.

Conclusion

Spencer, creating your own voice assistant is a fascinating and worthwhile endeavor. You’ll learn useful skills, expand your understanding of electronics, and enjoy the thrill of putting a complicated gadget together as you go along with the assembly process. Remember that the purpose of this project is to experience the thrill of learning, solving problems, and letting your imagination run free as well as to produce a final product. So be ready to join Spencer on this journey and discover a world of opportunities in the exciting world of voice assistants.

Get your own Spencer Building kit here: bit.ly/RobotsBlog

Robots-Blog makes Unitree Quadruped Go 1 dance

Unitree Quadruped Go 1 Dance Video 1+2. Find the latest News on robots, drones, AI, robotic toys and gadgets at robots-blog.com. If you want to see your product featured on our Blog, Instagram, Facebook, Twitter or our other sites, contact us. #robots #robot #omgrobots #roboter #robotic #automation #mycollection #collector #robotsblog #collection #botsofinstagram #bot #robotics #robotik #gadget #gadgets #toy #toys #drone #robotsofinstagram #instabots #photooftheday #picoftheday #followforfollow #instadaily #werbung #unitree #quadruped #robotics #mybotshop #dog #dance @mybotshop @unitreerobotics

Market launch: New Ensenso N models for 3D and robot vision

Upgraded Ensenso 3D camera series now available at IDS
 

Resolution and accuracy have almost doubled, the price has remained the same – those who choose 3D cameras from the Ensenso N series can now benefit from more advanced models. The new stereo vision cameras (N31, N36, N41, N46) can now be purchased from IDS Imaging Development Systems.

The Ensenso N 3D cameras have a compact housing (made of aluminium or plastic composite, depending on the model) with an integrated pattern projector. They are suitable for capturing both static and moving objects. The integrated projector projects a high-contrast texture onto the objects in question. A pattern mask with a random dot pattern complements non-existing or only weakly visible surface structures. This allows the cameras to deliver detailed 3D point clouds even in difficult lighting conditions.

With the Ensenso models N31, N36, N41 and N46, IDS is now launching the next generation of the previously available N30, N35, N40 and N45. Visually, the cameras do not differ from their predecessors. They do, however, use a new sensor from Sony, the IMX392. This results in a higher resolution (2.3 MP instead of 1.3 MP). All cameras are pre-calibrated and therefore easy to set up. The Ensenso selector on the IDS website helps to choose the right model.

Whether firmly installed or in mobile use on a robot arm: with Ensenso N, users opt for a 3D camera series that provides reliable 3D information for a wide range of applications. The cameras prove their worth in single item picking, for example, support remote-controlled industrial robots, are used in logistics and even help to automate high-volume laundries. IDS provides more in-depth insights into the versatile application possibilities with case studies on the company website.

Learn more: https://en.ids-imaging.com/ensenso-3d-camera-n-series.html