A Cute Robot That Dares to Fight: Self-balancing Robot “Gemini” Launches Kickstarter Campaign

Gemini, a waterdrop-shaped, two-wheel, self-balancing robot with two distinct personalities, will accommodate consumers’ leisure needs more than ever before. The Gemini Kickstarter campaign launches on November 10th, 2015.

After the wild success of Makeblock, an educational robot kit series targeting makers and educators, the Shenzhen-based hardware startup Shenzhen Maker Works Technology Co., Ltd expanded its reach and designed the user-friendly smart robot Gemini, which requires no programming knowledge or assembling efforts on users’ behalf.

While standing, Gemini moves like a cute puppy, spreading joy via iridescent LED lights and flashing emoticons, and dancing to music at your command. When Gemini is equipped with a turret and crouches down, however, the robot transforms into a fearless warrior who is ready to combat.

The key to Gemini’s accurate signaling and angular actions lies in the self-balancing technology. With one MPU-6050 3-Axis Accelerometer and Gyro working with STM32 MCU, through real-time analysis of related state parameters, Gemini can minimize the displacement both vertically and horizontally, in a timely manner, and control the angular offset with the utmost accuracy, remaining level with ease.

 

Additional Features:

 

Stable Movement

The waterdrop-shaped, two-wheel, streamlined structure, empowered by the dual encoder motors with high resolution, ensures Gemini’s extraordinary agility and mobility.

 

Innovative Control Systems

Based on the free iPad app, the robot can perform complex motions and tasks with tap-and-swipe finger movements, tilting techniques (gravity control), and voice control.

 

Fluent Intercommunication

Together, the 2.4G and Wi-Fi modules offer seamless and timely communication, instantly transmitting and updating all parties’ data throughout the game.

 

High-Sensitivity LED Blue Light

Inheriting the signature Makeblock blue LED lighting, Gemini improves the transmission efficiency and undermines unstable performance from the reflection of the sun, which is often encountered by IR light-enabled devices. Overall, Gemini offers users an enhanced interactive experience.

 

Starting at USD $99.00, the team provides different bundles for buyers. “Our mission is to make an ‘Apple product’ for consumer robot kits,” says the founder and robot hobbyist Jasen Wang.

 

See Kickstarter page: https://www.kickstarter.com/projects/1818505613/gemini-entertainment-and-educational-robot-for-kid

Pictures Maker Faire Berlin 2015

Dash Robotics Unveils Kamigami, its First Line of Animal-Inspired Robots

HAYWARD, Calif. (October 20, 2015) — Dash Robotics today unveiled the first generation of bio-inspired Kamigami robots, the first advanced robot toy available for less than $70. Kamigami are fast, lightweight, build-it-yourself robotic toys that snap together in an origami-like fashion. Kamigami fit in the palm of your hand, run very fast on six legs, and are controlled by a programmable mobile app (for iOS initially, Android coming in 2016). Kamigami will be available initially through Kickstarter, for $49 – a 30% discount off the MSRP of $69. Kamigami will be available directly from Dash Robotics and at Amazon.com in 2016.

Dash created Kamigami robots to bring programmable robotics to the mass market. Its low price point makes it the most accessible robotic toy ever. The DIY nature of Kamigami along with the simplicity of drag-and drop programming for changing and evolving each individual robot is intended to inspire kids everywhere to engage with, and learn from, advanced technology in a way that is easy, affordable, social and fun.

Kids can use easy drag-and-drop programming within the mobile app to modify the behavior of each individual robot, and can toggle between individual and team play modes. A simple yet sophisticated set of electronics included with each robot are easy for anyone to install. These include a small circuit board, battery, a light sensor, IR sensor, gyroscope and accelerometer, which combine to bring Kamigami to life. With the IR sensors, Kamigami robots can tag one another remotely in team play modes, such as tag or battle games. IR signals transmitted from one robot to another can cause different player-designed effects on the tagged robot.

Kamigami are evolved from the initial Dash Robot beta, released last year to test design and get early customer feedback. The core “skeleton” or chassis of Kamigami looks much like the original Dash beta, whose rapid movements mimic the movements of animals, particularly cockroaches and lizards. The founders of Dash studied biomimicry and robotics at the University of California, Berkeley. In a new twist, Kamigami feature interchangeable shells that snap over the chassis, turning the robot into a colorful creature from out of this world.

Nick Kohut, co-founder and chief executive officer of Dash Robotics, said, “We designed Kamigami so kids could discover a fun new way of learning. Our mantra is ‘build, program and evolve’ and Kamigami helps kids do just that. It’s the first DIY programmable robot that is affordable for everyone.”

Key Features of Kamigami Robots:

■ Do-It-Yourself: Kamigami can be assembled without tools in under an hour. No glue or soldering required.

■ High-speed: High speed and robust locomotion inspired by some of nature’s fastest runners.

■ iOS compatible: Free app allows you to control and program the robot. Android app coming soon.

■ Rechargeable: Built-in high performance rechargeable battery. Recharges in about 30 minutes. 45-60 minutes of playtime per charge.

■ Advanced sensor suite: Includes 10 different sensors, for things such as rotation, acceleration, sensing and responding to ambient light, sending and receiving infrared signals.

■ Robot-to-robot communication: Infrared communication allows robots to talk to each other, allowing the robots to cooperate or compete.

■ Durable: Robot’s flexible construction allows the robot to shrug off falls and collisions.

Programmable Behavior

Each Kamigami robot can be programmed with a unique set of behaviors and characteristics.

This enables a wide range of individual and team play modes that take advantage of the robot’s sensors and functions. Games that can be created include:

■ Sumo-bots – first to fall off the table loses points

■ Build your own battle game where robots blast each other with the IR lasers

■ Robot relay – one robot cannot run until it gets tagged by another robot

■ Tanks – take turns trying to get into firing position

Mechanical Intelligence

Most robots today are constructed either with hundreds of expensive injection-molded parts, or metal fastened together with steel bearings. They require an individual motor, or actuator, for each joint, making them slow, expensive and heavy. To overcome these fundamental challenges, Dash constructs its robots with a material made up of highly durable yet lightweight plastic.

This material fastens together using flexible plastic joints, or flexures, rather than ball bearings. Because of this design approach, Kamigami robots require only one or two actuators – another significant reduction in cost for both prototyping and manufacturing.

This rare combination of new composite material, intelligent design and innovative manufacturing results in robots that have much greater mechanical flexibility, are much faster, are lighter in weight and can be sold at a fraction of the cost of any competitor.

About Dash Robotics      

Dash Robotics was founded in 2013 by four UC Berkeley PhD students on a mission to make advanced robotics simple, fun and affordable for everyone. Dash has received a round of seed funding led by IronFire Capital, which has a track record of success investing in early-stage companies including Songza (acquired by Google), Streem (acquired by Box), Caviar (acquired by Square) and many others. Dash is headquartered in Hayward, California.

Src:Card The Card Game – The Robot Hacking, Computer Programming Card Game has launched on Kickstarter.

Sept, 2015 – Src:Card Games has completed their first standalone card game: Src:Card.  Src:Card is a two player (3-4 player with expansion) card game that pits players against each other as nation states.  Each nation has one super robot with the ability to conduct global warfare.  With the days of human combatants in the past, players must write code in order to defeat the all-powerful combat robots.

Each player alternately develops its robot’s defences and programs an attack against its opponent’s battle robot.  The game uses fundamental concepts from programming in order to facilitate the attack mechanisms within the game.  The dynamic nature of building robotic defences leads to a remarkably agile response from players.

Src:Card is a game of anticipation, defence and programmatic offence.  The code based mechanics of the game are challenging for beginners and become more challenging as players become more adept at using the programming blocks.  Src:Card was created by Sam Boychuk, Erwin Njembo and Jacob Grossman, each big fans of tabletop gaming and computer programming.

After exploring research topics in software engineering education, Sam Boychuk – lead developer – determined that academics where stressing the need to teach programming students a handful of basic concepts.  Two years ago Sam decided to create a Java-based visual programming language called Pipes, as a continuation of these studies.  Six months ago, the team decided that the ideas in Pipes could be better represented in a tactile standalone card game.  While incorporating cutting edge research in teaching programming, Src:Card incorporates foundational computer science lessons in an effort to entertain and educate players of the game.

While it is the primary goal of the Src:Card team to entertain, they are confident that exploring foundational topics in computer science can introduce a whole new generation of technology enthusiasts to the world of software development.  Erwin Njembo, a teacher and technology student stated “Src:Card is engaging, it is fun, it is competitive, it’s actually a game that keeps you on the edge, you have to use your brain all the time.”  Src:Card is looking forward to releasing the game on Kickstarter immediately.

Src:Card on Kickstarter

Cannybots Launches New Robot Smart Toys that Allow Kids to Design, Build, Program and Race their Own Custom Cars

London, UK – Cannybots, the programmable smart toy robots that can be controlled from a smartphone or tablet, and that get kids excited about robotics, today launched on Kickstarter.

Cannybots are smart toy robots that encourage children to play and spend time together, rather than spending their days in front of screens playing virtual games online. Cannybots teaches kids about robotics, programming, design and 3D printing while they are playing.

Children receive a construction kit for their Cannybot containing all the parts and detailed instructions to build their robot. They can then be programmed and controlled from phone, tablet, PC or a Raspberry Pi.

“Going through the building process gives kids the hands-on experience of building a functional robot that they can also program,” said Anish Mampetta, CEO of Cannybots. “Programming is an essential skill today but it is not easy to get kids started.  We are allowing kids to do this in a fun, interactive and rewarding way.”

To introduce children to programming, the Cannybots team created a simple and intuitive app called ‘CannyTalk.  The app uses a syntax-free programming environment that works like a friendly chat tool. Using the app anyone can program the Cannybot using plain English. The complex Artificial Intelligence (AI) based engine behind CannyTalk is developed in association with researchers from the Computer Science department at the University of Cambridge in the UK.

“The children use programming to solve puzzles, control Cannybots on race tracks, and create new game play styles,” added Mampetta. “It’s an interactive, social experience that brings friends and family together.”

Once built and programmed, the bots can be used in a number of play scenarios such as high speed racing, time trials, sumo-wrestling, jousting and puzzle-solving. Apps and printable tracks are available for each game.  Children can also design new car bodies using free, easy to use, browser based CAD software from Cannybots’ partner Autodesk. The designs can be then easily 3D printed using any home 3D Printer.

The current version of Cannybots is already very popular and is being used in over 20 schools in the UK and Europe.

Pre-orders start as low as $89 for an early bird special and will be shipped in time for the holidays.

For more information visit www.cannybots.com and on their Kickstarter campaign page – www.cannybots.com/kickstarter

About Cannybots 

Cannybots are smart toy robots that can be controlled and programmed from a phone or a tablet. This engaging toy brings kids play time out of their tablets and back into the real world. It also introduces kids to Programming, 3D Printing and Robotics through play.

Cannybots can be used in a large number of play scenarios, such as –Racing, Sumo Wrestling, Jousting, Maze solving and other puzzle games. There is a dedicated phone app and track design for each game play. Customer can print the tracks at home or use the large format tracks that we supply. It is also possible to make a large track by printing segments of A4 sheets. The bots work by following black lines and colored mark printed on the track.

Cannybots can be programmed from a Phone or a Tablet using a simple, intuitive app called CannyTalk. It is a Natural Language based programming interface using which you can program the robot in plain simple English. It eliminates the complex Syntax found with other programming languages thus making it easy for kids to get started.

Cannybots designs are open source, free and 3D Printable. You can easily customize the design using free, browser based CAD software from our partner Autodesk. The customized designs can be 3D printed using any ordinary home 3D printer.

Robo Wunderkind launches on Kickstarter

San Francisco, September 24, 2015 – Robo Wunderkind is a programmable robotics kit for children of all ages. On Monday, September 21, it was launched on Kickstarter, with early bird pledges starting from just $79. Robo Wunderkind is revolutionizing how coding is taught through robotics. Kids of all ages find it easy and enjoyable to play with!

Robo Wunderkind is a set of blocks for building robots. On the outside, Robo blocks are child friendly and safely encase the sophisticated electronics contained on the inside. These electronic components transform regular blocks into programmable robotic components. By just snapping blocks together, even a five year old can build a robot. The fun doesn`t stop there: kids can playfully program the robot in an intuitive app. Modular, colorful, and LEGOTM compatible, this is the toy that opens up children`s eyes to the world of technology.

Kickstarter link: https://www.kickstarter.com/projects/startrobo/robowunderkindaprogrammablerobotforkidsofa

Rustem Akishbekov, the founder and CEO of Robo Wunderkind, initially came up with the idea of a child-friendly programmable robot while trying to teach his friends the basic of coding and robotics. When he realized how complicated it was for new-to-programming users, he set out to make learning coding and robotics as fun and simple as playing with LEGOTM.

“We want to revolutionize the toys our kids play with, we want them to be more than pieces of plastic,” explains Rustem Akishbekov. “The LEGOTM brick hasn`t changed over 60 years while everything around it has. Now is the time for a smart toy like Robo Wunderkind that will help kids develop the skills they need for the future.”

Robo Wunderkind connects to Android and iOS devices via Bluetooth. Kids can use the app’s visual drag-and-drop interface to program it. This early learning method means that children aren´t hindered if their reading level is still developing. Once children have mastered the basics of coding, they can move on to program their robot with Scratch, a fun programming language for kids developed at MIT.

Robo Wunderkind is unique because children need not have any prior programming experience to get going. Furthermore, the cubes‘ magnet-free and secure connection system makes Robo Wunderkind stand out from the crowd. Robo Wunderkind’s innovative design has been turning heads in Europe, earning robotics award from Futurezone and the German robotics company Festo, as well as multiple startup awards.

Robo Wunderkind comes in three sets. Kickstarter prices started at $79. There is a sliding price scale depending on the cube quantity and complexity. The cubes’ colors relate to their function: red is a proximity sensor, blue is a motor, orange – the main controller, and so on. The most advanced set comes with a digital camera and a weather sensor. With these special functions, your children can give weather forecasts or even surprise you with their first filming endeavors. Robo Wunderkind has been designed so that flat LEGOTM adaptors can be attached, making the blocks compatible with LEGOTM. Children can then personalize the robots they have built with LEGOTM blocks or figures.

Anna Iarotska, COO and Head of Business Development at Robo Technologies says, “Kickstarter is the perfect place to launch Robo Wunderkind, as it hosts a community of people who value innovation, creativity, and fun. We look forward to seeing what the kids out there will build with Robo Wunderkind”.

With their Kickstarter campaign, which will run until October 29, the team is hoping to raise $70,000. The funds they raise will go directly towards producing the very first batch of robots, with shipping scheduled for Summer 2016.

About Robo Technologies, Inc.

Rustem Akishbekov founded Robo Technologies, Inc and brought Anna Iarotska and Yuri Levin on board in 2013. The company is based in Vienna, Austria and San Francisco, California. The founders have gathered together a team of passionate engineers and designers who have been working on the project for two years.

In the summer of 2014, the team was part of the first worldwide hardware accelerator HAX. The progress made there was incorporated into Robo, earning them the „Robot of the Year“ Award from Festo and the Austrian Startup of the Year Award.

Robo Wunderkind startet Kickstarter-Kampagne

San Francisco, 21. September 2015 – Robo Wunderkind, ein programmierbarer Roboter-Baukasten für Kinder aller Altersgruppen, startet heute seine Kampagne auf Kickstarter. Die ersten Unterstützer erhalten ein Starterpaket für nur $79 (ca. €69).

Kindern bietet Robo Wunderkind völlig neue Möglichkeiten, die Grundkenntnisse des Programmierens mit Hilfe von Robotern einfach und spielerisch zu erlernen.

Ein Robo-Wunderkind-Set besteht aus mehreren Würfeln, aus denen sich verschiedene Roboter bauen lassen. Die Außenseite der Würfel ist kinderfreundlich und schützt die elektronischen Komponenten im Inneren, die aus den Bausteinen programmierbare Elemente machen. Die Würfel lassen sich einfach miteinander kombinieren – bereits fünf Jahre alte Kinder können so ihre eigenen Roboter konstruieren. Doch damit nicht genug: Mit einer einfach zu bedienenden App können sie dann den Roboter spielerisch programmieren. Modular, farbenfroh und mit LegoTM-Steinen kombinierbar: Robo Wunderkind ist ein Spielzeug, das Kindern eine neue Tür in die Welt der Technologie öffnet.

Den Link zur Kickstarter-Kampagne finden Sie auf http://kickstarter.startrobo.com.

Rustem Akishbekov, der Gründer und CEO von Robo Wunderkind, hatte die Idee, einen kinderfreundlichen und programmierbaren Roboter zu entwickeln, als er versuchte, seinen Freunden die Grundlagen der Robotik und des Programmierens beizubringen. Dabei realisierte er, wie kompliziert die ersten Schritte für Neueinsteiger sind – und setzte sich zum Ziel, Robotik und Programmieren so einfach, intuitiv und lustig zu machen, als würde man mit LegoTM spielen.

„Wir möchten das Spielzeug, mit dem unsere Kinder spielen, revolutionieren. Wir möchten, dass es mehr ist, als nur Plastik”, sagt Rustem Akishbekov. „LegoTM-Steine haben sich in den vergangenen 60 Jahren nicht verändert. Aber alles darum herum hat sich verändert. Es ist an der Zeit, dass wir unseren Kindern mit Hilfe von smarten Spielsachen wie Robo Wunderkind dabei fördern, die Kenntnisse zu entwickeln, die sie in Zukunft brauchen werden.“

Robo Wunderkind lässt sich mit Android und iOS-Geräten via Bluetooth verbinden. Auch Kinder, die noch nicht lesen können, können ihre Roboter mit einer App mittels Drag-and-drop Interface programmieren. Sobald Kinder ihre ersten Programmier-Schritte erfolgreich gemeistert haben, können sie ihren Roboter auch mit Scratch steuern – einer lustigen Programmiersprache, die am MIT speziell für Kinder entwickelt wurde.

Einzigartig an Robo Wunderkind ist auch, dass Kinder keinerlei Programmier-Kenntnisse haben müssen, um loslegen zu können. Auch zeichnen Robo Wunderkind seine magnetfreien Würfel und sein sicheres Verbindungssystem aus. Das einzigartige Design hat in Europa bereits viel Aufmerksamkeit erhalten, wurde von Futurezone und der deutschen Roboter-Firma Festo ausgezeichnet, und hat mehrere Startup-Preise gewonnen.

Robo Wunderkind wird es in drei Sets geben. Preise auf Kickstarter starten bei $79 (ca. €69). Pakete mit zusätzlichen Würfeln und komplexeren Modulen werden ebenfalls erhältlich sein. Die Farbe der Würfel steht in Bezug zu ihrer Funktion: so beinhalten etwa rote Bauelemente einen Entfernungssensor, blaue einen Motor, und orange den Haupt-Controller. Das größte Set beinhaltet auch eine Digitalkamera und einen Wetter-Sensor.

Mit diesen Spezialfunktionen können Kinder zum Wetter-Forscher werden oder erste eigene Roboter-Filmprojekte starten. Robo Wunderkind wurde so entworfen, dass LegoTM-Steine und -Figuren daran befestigt werden können – so sind der Kreativität keine Grenzen gesetzt!

„Kickstarter ist die perfekte Plattform, um Robo Wunderkind zu starten. So erreichen wir eine Gemeinschaft von Menschen, die Innovation, Kreativität und Spaß wertschätzen“, sagt Anna Iarotska, COO und Leiterin des Bereichs Geschäftsentwicklung von Robo Technologies: „Wir freuen uns schon sehr darauf, zu sehen, was Kinder mit Robo Wunderkind alles bauen werden.“

Das Team hofft, durch seine Kickstarter-Kampagne, die bis 29. Oktober läuft, €62.000 ($70.000) von Unterstützern einzusammeln. Diese Mittel werden direkt in die Produktion der ersten Roboter-Generation investiert, die im kommenden Sommer ausgeliefert werden soll.

Robo Technologies GmbH

Die Robo Technologies GmbH, mit Sitz in Wien und einer Niederlassung in San Francisco, Kalifornien, wurde 2013 von Rustem Akishbekov gegründet; Anna Iarotska und Yuri Levin stießen bald danach dazu. Zusammen mit einem Team von leidenschaftlichen Entwicklern und Designern haben die Gründer in den vergangenen zwei Jahren Robo Wunderkind entwickelt. 2014 nahm das Team am weltweit ersten Hardware-Accelerator HAX teil. Die dort gesammelte Erfahrung verhalf Robo Technologies bereits zu mehreren Auszeichnungen, darunter dem “Roboter des Jahres”-Preis von Festo sowie dem “Austrian Startup of the Year”-Award.

 

Starfish underwater Drone

For the average person, the word drone likely brings one of several images to mind. One of those is the Unmanned Aerial Vehicles more commonly used by the military.

People with various levels of training and intelligence can now buy various versions of „copter“ drones, depending only on their budget. What logically follows are reports of people crashing their new toys (some costing $1,000 or more) into people or buildings, perhaps a testament to how little thought has gone into the idea.

Even Amazon is toying with the idea of using drones to deliver orders of laundry detergent or whatever it is that a conventional courier service can’t get to you fast enough before you run out.
The point is, when we think of drones, we typically think about one direction and that is up.

SheerTech, a Canadian industrial design company, is about to expand our directional thinking with a nifty little device that’s sure to be a hit with the underwater diving community.
It’s calling its invention the Starfish Underwater Quadradiver Robot and it won’t take you long to figure how this entirely capable device could quickly become an indispensable tool on a recreational dive boat (or any boat where fun and utility are the objective).

The Starfish—we’ll shorten the name from here on—connects its human operator on the surface with a 300-foot umbilical cord (which obviously defines how deep the device will go).
But as divers will already know, 300 feet is a long way down and there’s a good deal that can be done between the surface and that depth.
Connected to an IPad or Android device, the Starfish is naturally buoyant (which makes the surface set-up that much easier). The four 12-volt thruster motors are used to maneuver both downward and laterally and there’s a video camera as well as a maneuverable grappling hook capable of securing items weighing up to 500 pounds before the operator pulls the Starfish to the surface.

Mario Thibert, a master diver who once owned his own dive boat, is one who sees the potential of Starfish for the underwater diving community.
Writing on his website Thibert (http://www.crowdfunding-reviews.com) looked at Starfish from the diver’s perspective, and applauded the idea.
„This is not just a gadget for finding things at the bottom of the lake,“ writes Thibert. „This is a business.“
Thibert writes from experience, having owned a dive boat that operated on the St. Lawrence River, one of the busiest summer dive spots in the area off the province of Quebec, Canada.
„At the end of the day, we’d drive around in the boat near popular wrecks where there could be 150-200 divers on a weekend and we’d ‚drift‘ around where the boats would have been,“ Thibert writes. „People would drop things—a lot of stuff—when they were going down the moor line at a 45 degree angle and we’d pick up stuff like dive computers, BCDs, regulators, tanks, you name it.“

 

On the downside of that exercise, as divers well know, there’s a lot of work associated with just scouting around, not least of which is the need for a dive buddy.
With Starfish, trolling for treasure would become a lot easier—and potentially a lot more profitable.
Even at $2,000 per unit (the Kickstarter campaign runs until October 14) a dive community that’s accustomed to moderately hefty price tags will see the value.
Indeed, Thibert admits he paid $1,500 for a tethered camera alone.
„This is really an amazing product,“ he writes on his review site. „For a scuba diver, $2,000 is peanuts for something like this. There’s a lot of value here.“

The Starfish Underwater Quadradiver Robot is featured on Kickstarter (link https://www.kickstarter.com/projects/1066181261/starfish-underwater-quadradiver-robot).