If you need a beach cleaner, just ask for BeBot from The Searial Cleaners range. This robot cleans beaches to meet an essential environmental need and drastically simplifies the daily chore. Poralu Marine has developed a product that is perfectly adapted to its clients’ business concerns.
Not only does BeBot help protect the environment, but it does so without polluting: it is the only fully electric beach cleaner on the market, using both batteries and solar panels. It therefore emits no greenhouse gases.
Thanks to its technology, widely acclaimed by the scientific community, it protects fauna buried under the sand, notably turtle eggs. It helps prevent beach erosion and does not weaken beach subsoils.
To fine clean the sand, the cleaner robot is steered by remote control, which helps protect both the user and the environment. This silent multi-purpose robot can pull loads of up to 1000 kg or be fitted with a trailer to transport parasols, deckchairs, and so on. Both easy to use and autonomous, the robot greatly facilitates the work of its users.
BeBot is very quiet and can move around cleaning all day on the beach without disturbing tourists, boaters and people working on the beach.
As part of a framework agreement with the Italian company Niteko, Poralu Marine manufactures, markets and distributes this product throughout the world via a well-established network of partners on every continent.
The Swiss exoskeleton company Auxivo AG, a spin-off of ETH Zurich and a specialist in industrial exoskeletons has launched a Kickstarter campaign for a new educational exoskeleton kit called “EduExo Pro”.
The EduExo Pro aims to make exoskeleton technology available to students, makers, and hobbyists and make it easier for educators to integrate wearable exoskeleton technology into the classroom. The kit contains all the parts needed to assemble an arm exoskeleton. An accompanying handbook provides theoretical knowledge and guides the user step-by-step through the assembly and programming of the exoskeleton. On Kickstarter, the EduExo Pro is offered for CHF 890. For those who decide quickly, there is a limited number available for 790 CHF. Later, the retail price will be 1090 CHF.
What are exoskeletons?
Exoskeletons are wearable robotic systems that have become increasingly popular in medical and industrial applications in recent years. There they support specific movements and work to reduce the physical workload and prevent injuries. As the technology is still relatively young, there is hardly any possibility to access and learn about such systems outside of professional applications. Auxivo AG would like to close this gap by offering an educational kit to democratize the development of future exoskeletons.
LDROBOT a high-tech enterprise focusing on the research and development of advanced robotics, has announced the launch of LD-AIR LiDAR a ready-to-use compliant laser sensor with 360° sensing capabilities. This affordable LiDAR component makes any robot smarter and is available now on Kickstarter.
The ability to recognize objects and the environment is a key feature of many robots. LiDAR enables robots to scan their surroundings, make highly accurate maps, and navigate freely. Using advanced technology, LD-AIR LiDAR is a high-accuracy TOF sensor with 360° scanning range which is able to sense the surrounding environment by taking up to 4500 laser ranging samples per second to actualize obstacle detection and autonomously map any area.
LD-AIR LiDAR was created to serve business and research purposes that require robot navigation and obstacle avoidance. For robot developers, this essential component makes robots more useful and intelligent at an affordable price.
“In today’s advanced robots, LiDAR sensors are being widely used. The ability to quickly scan an area and create highly accurate maps is essential for applications such as archeology, geography and autonomous cars. And lately, consumer robots are using this technology in creative ways that make smart home applications and service robots smarter. Unfortunately, the cost of highly accurate LiDAR sensors is very high which puts this useful technology out of reach for many. Our goal at LDROBOT Group, was to make LiDAR accessible to everyone by creating a compact and affordable LiDAR with powerful features that is small enough to fit in virtually any device. Now, robotics innovators, makers, and hobbyists can harness the power of LiDAR to make more powerful, useful and convenient robots.”
As an affordable yet full-featured LiDAR solution, LD-AIR LiDAR can be readily applied to the design of working services robots for tasks such as route setting and automatic responsive behaviors. It is a Ready-To-Use compliant laser sensor that is small and versatile enough to fit in any appliance. With an aim toward improving consumer service robots LD-AIR LiDAR has important safety features built-in. It is Certified LD FDA Class 1 Laser Safety Standard, and uses a low power infrared laser light as its light source, effectiveness and eye safety for humans and pets.
LD-AIR LiDAR – Ultra-Small & High-Precision TOF Sensor is available now on Kickstarter with special pricing for early supporters. Learn more here: [Link]
GRBL is quite popular with the CNC hobby community, open source firmware that turns an Arduino into a CNC controller. It was released in 2015 and in recent years has gained many friends, among them SourceRabbit, a Greek CNC machine tool manufacturer, which aspires to transform GRBL from a hobby tool to an industry standard by offering the first commercial CNC control software for GRBL-compatible CNC machines.
Their new commercial software, GCode Sender 4-Axis, released in April 2021, replaced their old 3-axis software which has been available since 2015. It is compatible with the classic 3-Axis GRBL for AVR processors and the new multi axis Grbl for the Esp32.
We managed to obtain a statement from Nikos Siatras, CEO of SourceRabbit, who told us “From 2015 until the beginning of 2021, many GCode Sender applications were developed to control GRBL CNC machine tools. All of them were open source, free of charge, without any support and often with several bugs that tire even the most patient user. While GRBL is an incredibly good and flexible CNC control firmware, the GCode Senders that existed until today gave the impression that GRBL is purely for hobbyists. Through the development of our own software we are going to change that and we will try to make GRBL a CNC industry standard.”
SourceRabbit plans to implement many new tools and features to the GCode Sender 4-Axis. The software retails for €50.00 + VAT and with the purchase of each license you have free access to all subsequent versions of the software.
Low-cost, wide field-of-view, 3D time-of-flight sensor introduced to ever-expanding robotics market
ST. PETERSBURG, Fla.–(BUSINESS WIRE)–Jabil Inc. (NYSE: JBL) today announced that its renowned optical design center in Jena, Germany is currently developing a novel omnidirectional sensor for robotic and industrial platforms. By combining a custom optical assembly with an innovative active illumination approach, a new 3D time-of-flight (ToF) depth sensor with an industry-leading 360° x 60° field of view is being developed. The ground-breaking, solid-state design is one of several sensing systems Jabil’s optical business unit (Jabil Optics) is designing to support lower-cost autonomous mobile robotics and collaborative robotics platforms.
In contrast to conventional ToF cameras, the immersive field of view of Jabil’s omnidirectional sensor allows for seamless detection and tracking of objects in a robot’s path, aimed at improving both obstacle avoidance and worker safety. Additionally, Jabil’s inventive use of scene information to dynamically control illumination significantly reduces sensor noise while improving both data quality and power management.
“A mission of Analog Devices is to enable the autonomous mobile robot revolution by providing high performance and highly differentiated signal chains that bridge the gap between the analog and digital worlds,” said Donnacha O’Riordan, director of Analog Devices, Inc (ADI). “The Jabil omnidirectional sensor is one of the most innovative implementations of the ADI depth-sensing technology we have encountered. Jabil’s wide field-of-view, depth-sensing approach is opening up new possibilities for human interaction with robots.”
Market-Driven Innovation
The Jabil Optics team is optimizing the performance of the omnidirectional sensor to address the needs of the rapidly changing robotics industry. “Our design goal is to provide customers with optimal sensor performance in the smallest, lowest cost and lowest power solution possible,” said Ian Blasch, senior director of business development, Jabil Optics. “Factors such as data formats, on-sensor processing and connectivity are moving targets in the quickly evolving robotics industry. Our beta-testing program for the omnidirectional sensor will allow us to continue to collect targeted feedback from customers and partners in the robotics ecosystem.”
For nearly two decades, Jabil Optics has been recognized by leading technology companies as the premier service provider for advanced optical design, industrialization and manufacturing. With more than 170 employees across four locations, Jabil Optics’ designers, engineers and researchers specialize in solving complex optical problems for its customers in 3D sensing, augmented and virtual reality, action camera, automotive, industrial and healthcare markets. Additionally, Jabil Optics customers leverage expertise in product design, process development, testing, in-house active alignment (from Kasalis, a technology division of Jabil), supply chain management and manufacturing expertise.
The Jabil omnidirectional sensor beta development kit is available. To request the kit, click here.
About Jabil:
Jabil (NYSE: JBL) is a manufacturing solutions provider with over 260,000 employees across 100 locations in 30 countries. The world’s leading brands rely on Jabil’s unmatched breadth and depth of end-market experience, technical and design capabilities, manufacturing know-how, supply chain insights and global product management expertise. Driven by a common purpose, Jabil and its people are committed to making a positive impact on their local community and the environment. Visit www.jabil.com to learn more.
The newly founded company QUADRUPED Robotics is the first and currently the only German company to introduce fully modifiable multi-legged robots to the European market. In doing so, this form of robot represents a novelty: the four-legged robots combine artificial intelligence with new motion sequences and individually customizable equipment. The A1 robot in the QUADRUPED line is based on the Robot Operating System (ROS.org) and can thus be adapted to its environment and requirements. However, even the basic equipment enables a wide range of applications.
By means of an AI-controlled and depth-sensing smart camera, HD recordings can be transmitted in real time and to a terminal device. At the same time, the integrated multi-eye camera offers real-time tracking of objects in sight, gesture recognition and target tracking following specific movement patterns.
The basis for the development of an environment map is the visual SLAM. QUADRUPED A1 calculates paths, obstacles, routes and navigation points. This leads to vision-based autonomous obstacle avoidance. In addition, QUADRUPED A1 also recognizes obstacle shapes and an adjustment of the body position takes place. If an impact or fall does occur, the advanced dynamic balancing algorithm allows balance to be quickly restored. Further measurement data as well as more dynamic behavior can be achieved by integrating additional sensor technology, such as that of a 3D LiDAR or further camera modules.
The QUADRUPED A1 incorporates the unique patented sensitive foot contact. Each of the four feet can be controlled individually. The smart actuators provide precise footing as well as different gaits. The system is based on a low-level control developed by QUADRUPED Robotics, which can read out the position including torque and current consumption at any time. The foot end is waterproof and dustproof and can be easily replaced after wear. The A1 impressed with its latest measured top speed of 11.8 km/h (3.3 m/s), which is unique for a robot of this type. It can also carry loads of up to 5 kg.
For simplified maintenance work, the robot was designed with a stable and lightweight body structure. The A1 has an external 24 V power input and 5 V-/12 V-/19 V power supply, which enables the use of additional external devices. Other external interfaces include 4 USB, 2 HDMI, 2 Ethernet ports.
It is equipped with a powerful redundant control system: low-level control for CAN communication with the smart actuators and NVIDIA Xavier for calculation or measurement data evaluation. The current runtime of approx. 1.5 hours varies depending on the application.
Additional equipment is available from QUADRUPED Robotics and can be delivered with implemented software packages on request. Due to in-house research and development, the end customer can order a finished and tested product. Another service is the provision of complete documentation on the website www.docs.quadruped.de. In addition, complete simulation environments based on Webots & Gazebo are also made available for download there, which can be used for application testing.
QUADRUPED Robotics is a spin-off of MYBOTSHOP uG, which emerged as an established sales and development partner in the fields of robotics, sensor technology and automation technology. Company founder Daniel Kottlarz draws from the potential of four-legged and autonomous robots the opportunity to relieve humans in particularly dangerous areas of operation and situations and to ward off dangerous situations by means of the autonomous robots.
Das neu gegründete Unternehmen QUADRUPED Robotics führt als erstes und derzeit einziges deutsches Unternehmen voll modifizierbare mehrbeinige Roboter in den europäischen Markt ein. Dabei stellt diese Form der Roboter eine Neuheit dar: die Vierbeiner kombinieren künstliche Intelligenz mit neuen Bewegungsabläufen und einer individuell anpassbaren Ausstattung.
Der Roboter A1 der Linie QUADRUPED basiert auf dem Robot Operating System (ROS.org) und lässt sich somit auf seine Umgebung und Anforderung anpassen. Doch auch schon die Grundausstattung ermöglicht einen breiten Anwendungsbereich. Mittels KI-gesteuerter und tiefenerkennender Smart-Kamera lassen sich HD-Aufnahmen in Echtzeit und an ein Endgerät übertragen. Gleichzeitig bietet die integrierte Mehraugen-Kamera die Echtzeit-Verfolgung von Objekten in Sichtweite, Gestenerkennung und auf bestimmte Bewegungsmuster folgend die Zielpersonenverfolgung. Grundlage zur Erarbeitung einer Umgebungskarte ist das visuelle SLAM. QUADRUPED A1 berechnet Wege, Hindernisse, Strecken und Navigationspunkte. Dies führt zu einer visions-basierten autonomen Hindernisvermeidung. Zusätzlich erkennt der QUADRUPED A1 auch Hindernisformen und es erfolgt eine Anpassung der Körperposition. Sollte es doch zu einem Aufprall oder Sturz kommen, ermöglicht der fortschrittliche dynamische Balancier-Algorithmus das Gleichgewicht schnell wiederherzustellen. Weitere Messdaten sowie dynamischeres Verhalten können durch die Integration zusätzlicher Sensorik, wie die eines 3D-LiDAR oder weiterer Kameramodule, erreicht werden.
Im QUADRUPED A1 ist der einzigartige patentierte sensible Fußkontakt verbaut. Jeder der vier Füße kann einzeln und individuell angesteuert werden. Durch die smarten Aktuatoren sind präzises Auftreten sowie verschiedene Gangart geboten. Das System basiert auf einem von QUADRUPED Robotics entwickelten Low-Level-Control, das zu jedem Zeitpunkt die Position samt Drehmoment und Stromaufnahme auslesen kann. Das Fußende ist wasser- und staubdicht und kann nach Abnutzung leicht ausgetauscht werden. Der A1 überzeugte durch seine zuletzt gemessene Höchstgeschwindigkeit von 11,8 km/h (3,3 m/s), welche für einen Roboter dieser Art einmalig ist. Zudem kann er Lasten bis zu 5 kg tragen.
Für vereinfachte Wartungsarbeiten wurde bei dem Roboter auf eine stabile und leichte Karosseriestruktur geachtet. Der A1 verfügt über einen externen 24 V Stromeingang und 5 V-/12 V-/19 V-Spannungsversorgung, die den Einsatz zusätzlicher externer Geräte ermöglicht. Weitere externe Schnittstellen sind 4 USB-, 2 HDMI-, 2 Ethernet-Anschlüsse. Ausgestattet ist er mit einer leistungsstarken redundanten Steuerung: Low-Level-Control zur CAN-Kommunikation mit den smarten Aktuatoren und NVIDIA Xavier für die Berechnung bzw. Messdatenauswertung. Die aktuelle Laufzeit von ca. 1,5 Stunden variiert je nach Anwendung.
Zusatz-Equipment ist bei QUADRUPED Robotics erhältlich und wird auf Wunsch mit implementierten Software-Packages ausgeliefert. Durch die hausinterne Forschung und Entwicklung kann der Endkunde ein fertiges und getestetes Produkt bestellen. Ein weiterer Service ist die Bereitstellung der vollständigen Dokumentation auf der Website www.docs.quadruped.de. Darüber hinaus werden dort auch vollständige Simulationsumgebungen auf Basis von Webots & Gazebo zum Download bereitgestellt, die zu Anwendungstests genutzt werden können.
QUADRUPED Robotics ist eine Ausgründung der MYBOTSHOP uG, die als etablierter Vertriebs- und Entwicklungspartner in den Bereichen Robotik, Sensorik und Automatisierungstechnik entstand. Firmengründer Daniel Kottlarz schöpft aus dem Potenzial der vierbeinigen und autonomen Roboter die Chance, den Menschen in besonders gefährlichen Einsatzbereichen und Situationen zu entlasten und mittels der autonomen Roboter Gefahrensituationen abzuwehren.
Sebastian from Robots-Blog was able to do a short interview with Annelie Harz from Wandelbots. Learn in the interview what Wandelbots is and why programming might soon become obsolete.
Robots-Blog: Who are you and what is your job at Wandelbots?
Annelie: My name is Annelie and I work as a marketing manager at Wandelbots.
Robots Blog: Which robot from science, movies or TV is your favorite?
Annelie: Wall-E, actually. A little robot that does good things and is just adorable.
Robots Blog: What is Wandelbots and where does the name come from?
Annelie: The name describes the CHANGE (german: „Wandel“) of RoBOTics. Because that is exactly what we do. We enable everyone to handle robots, which today is only reserved for a small circle of experts. Our long-term company vision is: „Every robot in every company and every home runs on Wandelbots“. And that promises big change on a wide variety of levels – starting for us with industry.
Robots Blog: Who is your product aimed at and what do I need for it?
Annelie: Our product is currently aimed at customers from industry. Here, our software – Wandelbots Teaching – can help with programming various applications such as welding or gluing without having to write a line of code. It is designed to be so simple and intuitive that really anyone can work with it to teach a robot a desired result. This works through the interaction of an app and an input device, the TracePen. This takes the form of a large pen with which users can draw a desired path for the robot on the component. But we also work together with educational institutions. They are the ones who train the next generation of robot experts. And in the long term, we are convinced – and this is already part of our vision – that robots will also find their way into private life as little helpers.
Robots-Blog: What feature is particularly worth mentioning?/What can’t anyone else do?
Annelie: Our product works robot manufacturer independent. In robotics, each manufacturer has developed its own proprietary programming language over the years. This makes communication between humans and machines very difficult. We, on the other hand, want to create a tool that allows any human to work with any robot – completely independent of programming language and manufacturer. Robotics should be fun for the user of our product. Thanks to the high usability and the operation of our app via iPad, this is already possible today. And over the next time, application-specific editions will be added to our platform – currently, for example, we are working on an app version for robot welding.
Robots Blog: Do I still need to learn programming at all?
Annelie: No. As I just explained, with this so-called no-code technology, you don’t need to learn programming anymore. It is simple, intuitive and user-friendly, even for laymen. Of course, you always need to have some basic understanding of robotics, especially for safety reasons. You should never underestimate the dangers posed by robots, which is why our product always works according to the respective manufacturer-specific safety specifications.
Annelie: Of course, shortly after entering the market, we first want to make robotics in the industry, for example the automotive sector, more flexible and easier. To do this, we are gradually integrating the largest robot brands into our platform. We will certainly also integrate smaller robot brands that cover one or more niches. Or – even better – thanks to our Robot Integration Software Development Kit, robot manufacturers will soon be able to do it themselves.
Robots Blog: How much does your product cost?
Annelie: Our product is offered via a licensing model as a subscription, as is common in the Software as a Service business, or also classically for purchase. The current prices for the different editions can be found on our website (and you will certainly find more exciting content there)
The project, run by Heidelberg University with the collaboration of IUVO, aims to enlarge the wealth of knowledge and scientific evidence proving the usability, acceptability and effectiveness of Comau’s MATE-XT exoskeleton in reducing biomechanical loads during strenuous tasks
MATE-XT’s ergonomically-assisted support reduces muscle fatigue during overhead and repetitive operations
Grugliasco (Turin), June 17, 2021 – With the objective of strengthening the use of wearable robotics to facilitate human-machine collaboration, Comau and IUVO have partnered with Heidelberg University, one of Europe’s leading research institutions. The joint project aims to further quantify the degree to which the MATE-XT exoskeleton can reduce physical stress during strenuous tasks involving repetitive shoulder flexion movements within the German industrial context. The scientific study will analyze the biomechanics of using MATE-XT for new applications, under new conditions and within new industries and outdoor environments, while verifying users’ learning and motor adaptation speeds. The results achieved can be applied in similar conditions within other contexts all over the world.
The joint collaboration is fueled by the strong synergies in bio-engineering and advanced robotics that each partner brings to the table. Comau was introduced to Heidelberg University by IUVO, a spin-off company of Scuola Superiore Sant’Anna (Pisa, Italy). The majority share of IUVO is held by a joint venture between Comau and Össur, a market leader in the field of non-invasive orthopedics that improve human mobility, in which Comau is the majority holder. Comau has also co-developed both the original MATE and new MATE-XT exoskeletons together with IUVO.
The vast wealth of experience and scientific evidence collected by Comau and IUVO is the starting point of the new study. Heidelberg University will now research biomechanical and productivity results, among other factors, with the ultimate goal of collecting more data regarding MATE-XT’s effectiveness for novel and highly-demanding applications.
“The collaboration with Heidelberg University underscores our commitment to evolve the use of adaptive wearable technologies through the combination of empirically-backed research, advanced robotics and biomedical expertise,” said Giuseppe Colombina, Comau HUMANufacturing Innovation Hub Leader and CEO of IUVO.
“The collaboration with Comau and IUVO is extremely strategic for my research group at Heidelberg University. We have the chance to test a certified device from a leading automation company, and one that is also complementary to the robotic technology we have been designing here,” emphasized Lorenzo Masia, Ph.D. and Tenured Professor in Medical Technology and Biorobotics at Heidelberg University.
“The proliferation of wearable robotic devices represents a long-term, sustainable answer to ensure wellbeing in the workplace,” explained Nicola Vitiello, Ph.D., Associate Professor at Scuola Superiore Sant’Anna and founding partner of IUVO. “Our research with Heidelberg University, studying the use of MATE-XT within the German industrial context, will amplify our knowledge about the platform and potential development areas.”
The validation of breakthrough technologies in the field of biomedical devices and wearable robotics is an important step toward improving the quality of life for workers tasked with heavy, repetitive or highly manual operations. According to Comau estimates, the global market for exoskeletons alone will reach a 5-year CAGR of up to 40%, with the industrial sector representing close to half of this.
About Comau
Comau, a member of the Stellantis, is a worldwide leader in delivering advanced industrial automation products and systems. Its portfolio includes technology and systems for electric, hybrid and traditional vehicle manufacturing, industrial robots, collaborative and wearable robotics, autonomous logistics, dedicated machining centers and interconnected digital services and products able to transmit, elaborate and analyze machine and process data. With over 45 years of experience and a strong presence within every major industrial country, Comau is helping manufacturers of all sizes in almost any industry experience higher quality, increased productivity, faster time-to-market and lower overall costs. The company’s offering also extends to project management and consultancy, as well as maintenance and training for a wide range of industrial segments. Headquartered in Turin, Italy, Comau has an international network of 7 innovation centers, 5 digital hubs, 8 manufacturing plants and employs more than 9,000 people in 14 countries. A global network of distributors and partners allows the company to respond quickly to the needs of customers, no matter where they are located throughout the world. Through the training activities organized by its Academy, Comau is also committed to developing the technical and managerial knowledge necessary for companies to face the challenges and opportunities of Industry 4.0.