Draper Teaches Robots to Build Trust with Humans – new research

New study shows methods robots can use to self-assess their own performance

CAMBRIDGE, MASS. (PRWEB) MARCH 08, 2022

Establishing human-robot trust isn’t always easy. Beyond the fear of automation going rogue, robots simply don’t communicate how they are doing. When this happens, establishing a basis for humans to trust robots can be difficult.

Now, research is shedding light on how autonomous systems can foster human confidence in robots. Largely, the research suggests that humans have an easier time trusting a robot that offers some kind of self-assessment as it goes about its tasks, according to Aastha Acharya, a Draper Scholar and Ph.D. candidate at the University of Colorado Boulder.

Acharya said we need to start considering what communications are useful, particularly if we want to have humans trust and rely on their automated co-workers. “We can take cues from any effective workplace relationship, where the key to establishing trust is understanding co-workers’ capabilities and limitations,” she said. A gap in understanding can lead to improper tasking of the robot, and subsequent misuse, abuse or disuse of its autonomy.

To understand the problem, Acharya joined researchers from Draper and the University of Colorado Boulder to study how autonomous robots that use learned probabilistic world models can compute and express self-assessed competencies in the form of machine self-confidence. Probabilistic world models take into account the impact of uncertainties in events or actions in predicting the potential occurrence of future outcomes.

In the study, the world models were designed to enable the robots to forecast their behavior and report their own perspective about their tasking prior to task execution. With this information, a human can better judge whether a robot is sufficiently capable of completing a task, and adjust expectations to suit the situation.

To demonstrate their method, researchers developed and tested a probabilistic world model on a simulated intelligence, surveillance and reconnaissance mission for an autonomous uncrewed aerial vehicle (UAV). The UAV flew over a field populated by a radio tower, an airstrip and mountains. The mission was designed to collect data from the tower while avoiding detection by an adversary. The UAV was asked to consider factors such as detections, collections, battery life and environmental conditions to understand its task competency.

Findings were reported in the article “Generalizing Competency Self-Assessment for Autonomous Vehicles Using Deep Reinforcement Learning,” where the team addressed several important questions. How do we encourage appropriate human trust in an autonomous system? How do we know that self-assessed capabilities of the autonomous system are accurate?

Human-machine collaboration lies at the core of a wide spectrum of algorithmic strategies for generating soft assurances, which are collectively aimed at trust management, according to the paper. “Humans must be able to establish a basis for correctly using and relying on robotic autonomy for success,” the authors said. The team behind the paper includes Acharya’s advisors Rebecca Russell, Ph.D., from Draper and Nisar Ahmed, Ph.D., from the University of Colorado Boulder.

The research into autonomous self-assessment is based upon work supported by DARPA’s Competency-Aware Machine Learning (CAML) program.

In addition, funds for this study were provided by the Draper Scholar Program. The program gives graduate students the opportunity to conduct their thesis research under the supervision of both a faculty adviser and a member of Draper’s technical staff, in an area of mutual interest. Draper Scholars’ graduate degree tuition and stipends are funded by Draper.

Since 1973, the Draper Scholar Program, formerly known as the Draper Fellow Program, has supported more than 1,000 graduate students pursuing advanced degrees in engineering and the sciences. Draper Scholars are from both civilian and military backgrounds, and Draper Scholar alumni excel worldwide in the technical, corporate, government, academic, and entrepreneurship sectors.

Draper

At Draper, we believe exciting things happen when new capabilities are imagined and created. Whether formulating a concept and developing each component to achieve a field-ready prototype, or combining existing technologies in new ways, Draper engineers apply multidisciplinary approaches that deliver new capabilities to customers. As a nonprofit engineering innovation company, Draper focuses on the design, development and deployment of advanced technological solutions for the world’s most challenging and important problems. We provide engineering solutions directly to government, industry and academia; work on teams as prime contractor or subcontractor; and participate as a collaborator in consortia. We provide unbiased assessments of technology or systems designed or recommended by other organizations—custom designed, as well as commercial-off-the-shelf. Visit Draper at http://www.draper.com.

Maicat, the Cybernetic Companion Cat

Macroact, the personal robotics development lab operating out of South Korea, has released  their first AI based companion pet. Designed for education and entertainment, Maicat is now live on Kickstarter after years of design and testing. 

CAPABLE – Ready to use directly from the box, Maicat is an autonomous robot pet. Using its  sensors, Maicat is capable of detecting obstacles and walking around the house on its own.  With its laser range finder and gyroscope, it is able to adjust for thick carpets and door frames. 

CARING Maicat has facial, voice pattern and emotional recognition software. When paired  with the AI learning algorithm, Maicat is able to identify its owners and react to their moods. 

CONNECTED – Integrated IoT connectivity allows you to add Maicat’s sensors and capabilities  to your existing home network. The Maicat SDK will allow the creation of apps which will let Maicat talk to most modern IoT devices.

CREATIVE Maicat is an excellent platform to get students interested in STEM topics. With an  app and the Maicat SDK, students can study AI, programming, robotics, facial recognition…the  list goes on and on. 

CELEBRATED Maicat was a CES 2022 Innovation Award nominee for its IoT integration and  support. That’s more than you can say for most other pets. 

CUDDLY Maicat is small and light enough to pick up and pet. Sensors within its body let  Maicat know it’s being petted and Maicat will respond lovingly. 

To learn more about the Maicat project checkout the promotional link below.

Meet Maicat 

Maicat Kickstarter 

About Macroact Inc. 

Macroact is an AI and robotics startup that develops machine learning solutions for adaptive robots. The company focuses on the implementation of artificial intelligence solutions throughout the  whole robot development process to reduce time and costs of the robot development and enhance the  learning ability of robots. Their core technology is Maidynamics, an autonomous robot control solution.  Maicat is their first adaptive robot. 

obode Announces Launch of the P8: Next-Generation Robot Vacuum for Multi-Surface Floor Cleaning

Robotics experts obode, just announced the launch of a next-generation smart robot vacuum/mop for automated floor cleaning for the entire home. Featuring voice control, customizable app, and LDS intelligent navigation, this innovative new cleaning robot adds powerful cleaning and modern convenience to any home. The obode P8 is available now: https://www.kickstarter.com/projects/obodep8/obode-p8-2-in-1-smart-self-cleaning-cleaner

obode P8 is the ultimate all in one floor cleaning solution with 3 modes for sweeping, vacuuming, mopping, and combination cleaning. Equipped with double-spin mops and a heavy duty vacuum motor with 2000pa of suction power, the system easily picks up debris and hair from both hard floors and carpets. P8 uses an advanced ultrasonic sensor to determine surface types and apply the proper cleaning, sweeping or mopping as needed. It moves seamlessly across the room, and intelligently switches between sweeping and mopping for safe, effective cleaning of any floor types.   

 “Many people have made the move to robotic vacuum cleaners for home convenience. However, over the past few years, technologies such as robotic navigation and surface sensors have greatly advanced. For P8, we applied these next-gen technologies to create the ultimate robot vacuum cleaner with mopping functions. The result is the most advanced multi-surface floor cleaning device with superior mapping, intelligent surface identification and multi-mode cleaning for all household floors. P8 intelligently cleans and features programmable functions that takes the hassle out of household chores. It efficiently and thoroughly keeps your floors clean so that you don’t have to. It’s the perfect addition to the modern home.” Founder, obode

P8 uses the latest in advanced LDS navigation and multi-layer mapping with an intelligent algorithm to avoid obstacles and barriers as it determines the most efficient and effective cleaning route through the home. With a 6200mAh battery built-in, P8 is capable of up to 2.5 hours of continuous cleaning, enough to do the entire house, before it automatically returns to base for recharging. For superior cleaning, P8 has a backwashing mopping cloth to prevent secondary smudging and automatically returns to the base to clean and hot dry the mop to disinfect it after each cleaning session. 

Convenient control of the P8 is achieved with voice commands via Alexa or Google Home and the system has an intelligent app for scheduling, customized cleaning, setting no-go zones, and ‘Do-not-disturb’ modes. The app updates automatically OTA and provides total control at the touch of a button. 

The obode P8 combines the latest intelligent cleaning features with next-generation robotic tech for the modern home. P8 is available now for pre-sale with special deals and pricing for early adopters: https://www.kickstarter.com/projects/obodep8/obode-p8-2-in-1-smart-self-cleaning-cleaner

Creality’s new budget 3D scanner, the CR-Scan Lizard, is about to hit Kickstarter

Creality has lifted the veil over its latest 3D scanner. In an effort to further diversify its 3D cosmos, Creality, the well-known manufacturer of 3D printing-community-favorites such as the Ender 3, has announced its new and improved 3D scanner: the CR-Scan Lizard.

This entry-level 3D scanner for consumers follows the company’s CR-Scan 01 — which was released a fairly short time ago as an affordable option for users to digitalize objects. The new Lizard is smaller in size for better portability and feel but promises improved features such as accuracy up to 0.05 mm, and better handling of bright environments and dark objects. All that for less money than its predecessor, even.

With the Lizard, you can scan small or large objects with ease. The CR Studio software does the heavy lifting of optimizing models and even sends those files via the Creality Cloud directly to your 3D printer. The applications seem almost endless.

With some early bird specials, the CR-Scan Lizard has made a debut on Kickstarter on February 2022, and, unsurprisingly, smashed its campaign goal in next to no time.

We have gathered all the information revealed so far about this new consumer-grade 3D scanner to give you an overview of what the Lizard has in store. Creality has also already sent us a scanner to try for ourselves, so keep an eye out for our upcoming hands-on experience.

Image of Creality CR-Scan Lizard: Specs, Price, Release & Reviews: Features

Features

HIGH ACCURACY

With the CR-Scan Lizard, Creality wants to bring professional-grade accuracy to the budget market. According to its spec sheet, the scanner has an accuracy of up to 0.05 mm allowing it to capture small parts and intricate details with high precision. Thanks to the scanner’s binoculars and improved precision calibration, Creality says it can pick up rich detail from objects as small as 15 x 15 x 15 mm, or as large as objects like car doors, engines, rear bumpers, and so on.

SCAN MODES

The CR-Scan Lizard comes with three different scanning modes. You can either use it in turntable mode, handheld mode, or a mixture of the two to scan an object.

Turntable mode is suitable for 15 – 300 mm objects and will scan automatically. You can use the combination mode for larger objects up to 500 mm, where you put the object on the rotary table but hold the scanner in hand to scan. Lastly, its handheld mode is suitable for scanning large objects up to 2 meters in size, such as the car parts mentioned above.

Plus, thanks to its visual tracking, the Lizard doesn’t need markers to work. You can scan objects without having to pin a bunch of stickers to them first — its software’s tracking algorithm will take care of that for you.

LIGHT OR DARK

Besides its scan modes, the Lizard also offers some improved scanning functions that should make it easier for users to achieve good results with minimal effort.

For one, Creality states the Lizard can scan accurately in sunlight. 3D scanners typically struggle with too much direct light, forcing users to scan in a darkened room for best results. However, Creality claims the Lizard, thanks to its multi-spectral optical technology, maintains excellent performance even in bright sunlight — which would vastly improve its field of application. The scanner can also be powered by a portable charger, so, in theory, you could go out there and scan the woods to your heart desire.

What’s more, the CR-Scan Lizard promises better material adaptability when scanning black and dark objects. Sounds like it’s got it all.

COLOR MAPPING

Creality has stated that it is planning to release a fully automated color mapping texture suite in March 2022 that promises true color fidelity for your scanned objects, but its currently still in development. Once released, you can make use of the mapping process, where high-definition color pictures of the model taken with a phone or DSLR camera can automatically be mapped onto the 3D model, allowing you to create high-quality, vivid color scans.

CR STUDIO

The Lizard’s accompanying software, CR Studio, promises many features that should help to achieve clean scans. For example, the software features on-click model optimization and multi-positional auto alignment, auto noise removal, topology simplified, texture mapping, and much more.

You can also upload and share models via the Creality Cloud, allowing you to slice your scanned objects and even send them to a 3D printer — all with the click of a button.

Release Date & Availability

Creality has set up a limited pre-order via Kickstarter. The scanner is available for backing since February 10, 2022, alongside some early bird batch sales. According to the Kickstarter campaign, shipping will take place in April.

Over the past days and weeks, Creality has already released a couple of videos on its YouTube channel showing off the scanner’s features in greater detail. Be sure to check those out if the Lizard tickles your fancy.

Creality has also already sent All3DP a CR-Scan Lizard to try out, so we are looking forward to giving it a spin in the next few days. Stay tuned for a full review of our hands-on experience.

At the time of writing, the CR-Scan Lizard is available via Kickstarter with super early bird pledges, priced from $300 for the most basic Lizard package and reaching $400 for the luxury version that already comes with a color kit.

According to the campaign, the off-the-shelf price for the Lizard will be $599 for its base version. So, there are potentially some bucks to be saved if you get in early. However, it wouldn’t be the first time that prices given changed eventually.

Here are the technical specifications for the Creality CR-Scan Lizard 3D scanner:

GENERAL SPECIFICATIONS

  • Precision: 0.05 mm
  • Resolution ratio: 0.1 – 0.2 mm
  • Single capture range: 200 x 100 mm
  • Operating Distance: 150 – 400 mm
  • Scanning Speed: 10 fps
  • Tracking mode: Visual tracking
  • Light: LED+NIR (Near-infrared mode)
  • Splicing Mode: Fully automatic geometry and visual tracking (without marker)

OUTPUT

  • Output Format: STL, OBJ, PLY
  • Compatible System: Win 10 64bit (MacOS to be released in March 2022)

COMMON SPECIFICATIONS

  • Machine Size: 155 x 84 x 46 mm
  • Machine Weight: 370 g

https://www.kickstarter.com/projects/3dprintmill/creality-cr-scan-lizard-capturing-fine-details-of-view

Starship Launches Grocery Delivery Service in Bay Area

On-demand robot delivery now available in Pleasanton, CA at Lucky California flagship store

SAN FRANCISCO (February, 2022)  Starship Technologies, the world’s leading provider of autonomous delivery services, is now delivering groceries in the San Francisco Bay Area. Starship is expanding its partnership with The Save Mart Companies for the exclusive launch of an on-demand grocery delivery service at its Lucky California flagship store in Pleasanton, CA. Lucky is the first grocery store in the San Francisco Bay Area to partner with Starship. 

Starship and The Save Mart Companies first partnered in September 2020, when the Save Mart flagship store in Modesto became the first grocery store in the U.S. to offer Starship robot delivery service. Since its launch, that store has expanded its delivery area to serve over 55,000 households. In Pleasanton, the service is launching to thousands of residents, with the delivery area expected to grow rapidly in the coming months, similar to Modesto. 

“We are very pleased to bring the benefits of autonomous delivery to Pleasanton, in partnership with Lucky California,” said Ryan Tuohy, SVP of Sales and Business Development at Starship Technologies. “Since launching our service in Modesto in 2020, we’ve been excited to see the extremely positive reaction to the robots and how they were embraced as part of the local community. We think the residents of Pleasanton will appreciate the convenience and positive environmental impact of autonomous delivery and we fully expect the service area to quickly expand to more households.”

The robots, each of which can carry up to 20 pounds of groceries – the equivalent of about three shopping bags – provide a convenient, energy-efficient, and low-cost delivery alternative to driving to the Lucky California store, allowing shoppers to browse thousands of items via the secure Starship app for on-demand delivery straight to their home.

The robots travel autonomously – crossing streets, climbing curbs and traversing sidewalks – to provide on-demand delivery to shoppers. They often become local celebrities as community members share their robot selfies and “love notes” on social media. 

“Since the debut of our contactless delivery service at the Save Mart flagship store, feedback from the Modesto community has been incredibly positive,” said Barbara Walker, senior vice president and chief marketing officer for The Save Mart Companies. “We are thrilled to expand this service to Lucky California in Pleasanton and offer a safe and efficient grocery delivery solution, along with some joyful entertainment, especially as the service area progressively expands over time..”

The Starship Food Delivery app is available for download on iOS and Android. To get started, customers choose from a range of their favorite groceries and drop a pin where they want their delivery to be sent. When an order is submitted, Lucky California team members gather the delivery items and carefully place them in a clean robot. Every robot’s interior and exterior is sanitized before each order. The customer can then watch as the robot makes its journey to them, via an interactive map. Once the robot arrives, the customer receives an alert, and can then meet the robot and unlock it through the app.

Starship already offers its services in many parts of the EU, UK and the US in cities, university campuses and industrial campuses, with further expansion planned in the near future. Starship is able to do L4 deliveries everywhere it operates – entire cities and campuses. The robots have been operating at L4 since 2018. On a daily basis Starship robots will complete numerous deliveries in a row 100% autonomously, including road crossings. This is why the cost of a Starship delivery is now lower than the human equivalent, which is believed to be a world first for any robot delivery company, whereas most others are still majority human controlled and in pilot mode.

Starship Technologies operates commercially on a daily basis around the world. Its zero-emission robots make more than 100,000 road crossings every day and have completed more than 2.5 million commercial deliveries and travelled more than 3 million miles (5 million+ kms) globally, more than any other autonomous delivery provider.

Further development of IDS NXT ocean: focus on user-friendliness and AI transparency

All-in-one embedded vision platform with new tools and functions

(PresseBox) (ObersulmAt IDS, image processing with artificial intelligence does not just mean that AI runs directly on cameras and users also have enormous design options through vision apps. Rather, with the IDS NXT ocean embedded vision platform, customers receive all the necessary, coordinated tools and workflows to realise their own AI vision applications without prior knowledge and to run them directly on the IDS NXT industrial cameras. Now follows the next free software update for the AI package. In addition to the topic of user-friendliness, the focus is also on making artificial intelligence clear and comprehensible for the user.

An all-in-one system such as IDS NXT ocean, which has integrated computing power and artificial intelligence thanks to the „deep ocean core“ developed by IDS, is ideally suited for entry into AI Vision. It requires no prior knowledge of deep learning or camera programming. The current software update makes setting up, deploying and controlling the intelligent cameras in the IDS NXT cockpit even easier. For this purpose, among other things, an ROI editor is integrated with which users can freely draw the image areas to be evaluated and configure, save and reuse them as custom grids with many parameters. In addition, the new tools Attention Maps and Confusion Matrix illustrate how the AI works in the cameras and what decisions it makes. This helps to clarify the process and enables the user to evaluate the quality of a trained neural network and to improve it through targeted retraining. Data security also plays an important role in the industrial use of artificial intelligence. As of the current update, communication between IDS NXT cameras and system components can therefore be encrypted via HTTPS.

Just get started with the IDS NXT ocean Creative Kit

Anyone who wants to test the industrial-grade embedded vision platform IDS NXT ocean and evaluate its potential for their own applications should take a look at the IDS NXT ocean Creative Kit. It provides customers with all the components they need to create, train and run a neural network. In addition to an IDS NXT industrial camera with 1.6 MP Sony sensor, lens, cable and tripod adapter, the package includes six months‘ access to the AI training software IDS NXT lighthouse. Currently, IDS is offering the set in a special promotion at particularly favourable conditions. Promotion page: https://en.ids-imaging.com/ids-nxt-ocean-creative-kit.html.

Learn more: www.ids-nxt.com

Weiterentwicklung von IDS NXT ocean: Fokus auf Benutzerfreundlichkeit und KI-Transparenz

All-in-One Embedded Vision Plattform mit neuen Werkzeugen und Funktionen

(PresseBox) (ObersulmBei IDS bedeutet Bildverarbeitung mit künstlicher Intelligenz nicht nur, dass die KI direkt auf Kameras läuft und Anwender zusätzlich enorme Gestaltungsmöglichkeiten durch Vision Apps haben. Kunden erhalten mit der Embedded-Vision-Plattform IDS NXT ocean vielmehr alle erforderlichen, aufeinander abgestimmten Tools und Workflows, um eigene KI-Vision-Anwendungen ohne Vorwissen zu realisieren und direkt auf den IDS NXT Industriekameras auszuführen. Jetzt folgt das nächste kostenlose Softwareupdate für das KI-Paket. Im Fokus steht neben dem Thema Benutzerfreundlichkeit auch der Anspruch, die künstliche Intelligenz für den Anwender anschaulich und nachvollziehbar zu machen.

Ein All-in-One System wie IDS NXT ocean, das durch den von IDS entwickelten „deep ocean core“ über integrierte Rechenleistung und künstliche Intelligenz verfügt, eignet sich bestens für den Einstieg in AI Vision. Es erfordert weder Vorkenntnisse in Deep Learning noch in der Kameraprogrammierung. Das aktuelle Softwareupdate macht die Einrichtung, Inbetriebnahme und Steuerung der intelligenten Kameras im IDS NXT cockpit noch einfacher. Hierzu wird unter anderem ein ROI-Editor integriert, mit dem Anwender die auszuwertenden Bildbereiche frei zeichnen und als beliebige Raster mit vielen Parametern konfigurieren, speichern und wiederverwenden können. Darüber hinaus veranschaulichen die neuen Werkzeuge Attention Maps und Confusion Matrix, wie die KI in den Kameras arbeitet und welche Entscheidungen sie trifft. Das macht sie transparenter und hilft dem Anwender, die Qualität eines trainierten neuronalen Netzes zu bewerten und durch gezieltes Nachtraining zu verbessern. Beim industriellen Einsatz von künstlicher Intelligenz spielt auch Datensicherheit eine wichtige Rolle. Ab dem aktuellen Update lässt sich die Kommunikation zwischen IDS NXT Kameras und Anlagenkomponenten deshalb per HTTPS verschlüsseln. 

Einfach loslegen mit dem IDS NXT ocean Creative Kit

Wer die industrietaugliche Embedded-Vision-Plattform IDS NXT ocean testen und das Potenzial für die eigenen Anwendungen evaluieren möchte, sollte einen Blick auf das IDS NXT ocean Creative Kit werfen. Kunden erhalten damit alle Komponenten, die sie für die Erstellung, das Trainieren und das Ausführen eines neuronalen Netzes benötigen. Neben einer IDS NXT Industriekamera mit 1,6 MP Sony Sensor, Objektiv, Kabel und Stativadapter enthält das Paket u.a. einen sechsmonatigen Zugang zur KI-Trainingssoftware IDS NXT lighthouse. Aktuell bietet IDS das Set in einer Sonderaktion zu besonders günstigen Konditionen an. Aktionsseite: https://de.ids-imaging.com/ids-nxt-ocean-creative-kit.html.

Weitere Informationen: www.ids-nxt.de

Hiwonder uHand Unboxing: uHand2.0: Hiwonder Bionic Robot Hand

Hiwonder uHand Unboxing: uHand2.0: Hiwonder Bionic Robot Somatosensory Open-source Compatible with Arduino/ STM32 Programming. Find the latest News on robots drones AI robotic toys and gadgets at robots-blog.com. Follow us on our Blog Instagram Facebook Twitter or our other sites. Share your robotics ideas and products with us. #robots #robot #omgrobots #roboter #robotic #mycollection #collector #robotsblog #collection #botsofinstagram #bot #robotics #robotik #gadget #gadgets #toy #toys #drone #robotsofinstagram #instabots #photooftheday #picoftheday #followforfollow #instadaily #hiwonder #uhand #arduino #stm32

Picked up and put off

Guest post by IDS Corporate Communications

Autonomously driving robotic assistance system for the automated placement of coil creels

Due to the industry standard 4.0, digitalisation, automation and networking of systems and facilities are becoming the predominant topics in production and thus also in logistics. Industry 4.0 pursues the increasing optimisation of processes and workflows in favour of productivity and flexibility and thus the saving of time and costs. Robotic systems have become the driving force for automating processes. Through the Internet of Things (IoT), robots are becoming increasingly sensitive, autonomous, mobile and easier to operate. More and more they are becoming an everyday helper in factories and warehouses. Intelligent imaging techniques are playing an increasingly important role in this.

To meet the growing demands in scaling and changing production environments towards fully automated and intelligently networked production, the company ONTEC Automation GmbH from Naila in Bavaria has developed an autonomously driving robotic assistance system. The „Smart Robot Assistant“ uses the synergies of mobility and automation: it consists of a powerful and efficient intralogistics platform, a flexible robot arm and a robust 3D stereo camera system from the Ensenso N series by IDS Imaging Development Systems GmbH.

The solution is versatile and takes over monotonous, weighty set-up and placement tasks, for example. The autonomous transport system is suitable for floor-level lifting of Euro pallets up to container or industrial format as well as mesh pallets in various sizes with a maximum load of up to 1,200 kilograms. For a customer in the textile industry, the AGV (Automated Guided Vehicle) is used for the automated loading of coil creels. For this purpose, it picks up pallets with yarn spools, transports them to the designated creel and loads it for further processing. Using a specially developed gripper system, up to 1000 yarn packages per 8-hour shift are picked up and pushed onto a mandrel of the creel. The sizing scheme and the position of the coils are captured by an Ensenso 3D camera (N45 series) installed on the gripper arm.

Application

Pallets loaded with industrial yarn spools are picked up from the floor of a predefined storage place and transported to the creel location. There, the gripper positions itself vertically above the pallet. An image trigger is sent to the Ensenso 3D camera from the N45 series, triggered by the in-house software ONTEC SPSComm. It networks with the vehicle’s PLC and can thus read out and pass on data. In the application, SPSComm controls the communication between the software parts of the vehicle, gripper and camera. This way, the camera knows when the vehicle and the grabber are in position to take a picture. This takes an image and passes on a point cloud to a software solution from ONTEC based on the standard HALCON software, which reports the coordinates of the coils on the pallet to the robot. The robot can then accurately pick up the coils and process them further. As soon as the gripper has cleared a layer of the yarn spools, the Ensenso camera takes a picture of the packaging material lying between the yarn spools and provides point clouds of this as well. These point clouds are processed similarly to provide the robot with the information with which a needle gripper removes the intermediate layers. „This approach means that the number of layers and finishing patterns of the pallets do not have to be defined in advance and even incomplete pallets can be processed without any problems,“ explains Tim Böckel, software developer at ONTEC. „The gripper does not have to be converted for the use of the needle gripper. For this application, it has a normal gripping component for the coils and a needle gripping component for the intermediate layers.“

For this task, the mobile use for 3D acquisition of moving and static objects on the robot arm, the Ensenso 3D camera is suitable due to its compact design. The Ensenso N 45’s 3D stereo electronics are completely decoupled from the housing, allowing the use of a lightweight plastic composite as the housing material. The low weight facilitates the use on robot arms such as the Smart Robotic Asstistant. The camera can also cope with demanding environmental conditions. „Challenges with this application can be found primarily in the different lighting conditions that are evident in different rooms of the hall and at different times of the day,“ Tim Böckel describes the situation. Even in difficult lighting conditions, the integrated projector projects a high-contrast texture onto the object to be imaged by means of a pattern mask with a random dot pattern, thus supplementing the structures on featureless homogenous surfaces. This means that the integrated camera meets the requirements exactly. „By pre-configuring within NxView, the task was solved well.“ This sample programme with source code demonstrates the main functions of the NxLib library, which can be used to open one or more stereo and colour cameras whose image and depth data are visualised. Parameters such as exposure time, binning, AOI and depth measuring range can – as in this case – be adjusted live for the matching method used.

The matching process empowers the Ensenso 3D camera to recognise a very high number of pixels, including their position change, by means of the auxiliary structures projected onto the surface and to create complete, homogeneous depth information of the scene from this. This in turn ensures the necessary precision with which the Smart Robot Assistant proceeds. Other selection criteria for the camera were, among others, the standard vision interface Gigabit Ethernet and the global shutter 1.3 MP sensor. „The camera only takes one image pair of the entire pallet in favour of a faster throughput time, but it has to provide the coordinates from a relatively large distance with an accuracy in the millimetre range to enable the robot arm to grip precisely,“ explains Matthias Hofmann, IT specialist for application development at ONTEC. „We therefore need the high resolution of the camera to be able to safely record the edges of the coils with the 3D camera.“ The localisation of the edges is important in order to be able to pass on as accurate as possible the position from the centre of the spool to the gripper.

Furthermore, the camera is specially designed for use in harsh environmental conditions. It has a screwable GPIO connector for trigger and flash and is IP65/67 protected against dirt, dust, splash water or cleaning agents.

Software

The Ensenso SDK enables hand-eye calibration of the camera to the robot arm, allowing easy translation or displacement of coordinates using the robot pose. In addition, by using the internal camera settings, a „FileCam“ of the current situation is recorded at each pass, i.e. at each image trigger. This makes it possible to easily adjust any edge cases later on, in this application for example unexpected lighting conditions, obstacles in the image or also an unexpected positioning of the coils in the image. The Ensenso SDK also allows the internal camera LOG files to be stored and archived for possible evaluation.

ONTEC also uses these „FileCams“ to automatically check test cases and thus ensure the correct functioning of all arrangements when making adjustments to the vision software. In addition, various vehicles can be coordinated and logistical bottlenecks minimised on the basis of the control system specially developed by ONTEC. Different assistants can be navigated and act simultaneously in a very confined space. By using the industrial interface tool ONTEC SPSComm, even standard industrial robots can be safely integrated into the overall application and data can be exchanged between the different systems.

Outlook

Further development of the system is planned, among other things, in terms of navigation of the autonomous vehicle. „With regard to vehicle navigation for our AGV, the use of IDS cameras is very interesting. We are currently evaluating the use of the new Ensenso S series to enable the vehicle to react even more flexibly to obstacles, for example, classify them and possibly even drive around them,“ says Tim Böckel, software developer at ONTEC, outlining the next development step.

ONTEC’s own interface configuration already enables the system to be integrated into a wide variety of Industry 4.0 applications, while the modular structure of the autonomously moving robot solution leaves room for adaptation to a wide variety of tasks. In this way, it not only serves to increase efficiency and flexibility in production and logistics, but in many places also literally contributes to relieving the workload of employees.

More at: https://en.ids-imaging.com/casestudies-detail/picked-up-and-put-off-ensenso.html

Low-Cost-Automation in XXL: Großer DIY-Palettierer von igus zum kleinen Preis

drylin XXL-Raumportalroboter ist bis zu 60 Prozent günstiger als vergleichbare Lösungen und besonders einfach in Betrieb zu nehmen

Köln, 8. Februar 2022 – igus erweitert sein breites Low-Cost-Automation Angebot um einen neuen drylin XXL-Raumportalroboter. Das Portal hat einen Aktionsradius von 2000 x 2000 x 1500 Millimeter und eignet sich besonders für Palettierungsanwendungen bis 10 Kilogramm. Der Roboter ist ab 7.000 Euro inklusive Steuerung erhältlich und lässt sich einfach selbst nach dem Do-it-yourself Prinzip aufbauen und programmieren – ohne Hilfe eines Systemintegrators.

Der schmier- und wartungsfreie drylin XXL-Raumportalroboter von igus hebt bis zu 10 Kilogramm und kostet bis zu 60 Prozent weniger als vergleichbare Lösungen. (Quelle: igus GmbH)

Zu teuer in der Anschaffung, zu aufwendig in der Programmierung, zu kompliziert in der Wartung: Viele kleine und mittelständische Unternehmen scheuen den Einstieg in die Automatisierung. Und gefährden damit langfristig ihre Wettbewerbsfähigkeit. Dabei geht der Einstieg ganz leicht von der Hand. Das beweist der drylin XXL-Portalroboter von igus. Der DIY-Bausatz bietet Unternehmen die Möglichkeit, schnell und unkompliziert einen Pick-and-Place Linearroboter für Aufgaben rund um Palettierung, Sortierung, Etikettierung und Qualitätsprüfung in Betrieb zu nehmen. „Palettier-Roboter, die in Zusammenarbeit mit externen Dienstleistern entstehen, kosten schnell zwischen 85.000 und 120.000 Euro. Das sprengt das Budget vieler kleiner Betriebe“, sagt Alexander Mühlens, Leiter Geschäftsbereich Low-Cost-Automation bei igus. „Wir haben deshalb eine Lösung entwickelt, die aufgrund des Einsatzes von Hochleistungskunststoffen und Leichtbaumaterialien wie Aluminium um ein Vielfaches günstiger ist. So kostet der drylin XXL-Raumportalroboter je nach Ausbaustufe zwischen 7.000 und 10.000 Euro. Eine Investition, die risikoarm ist und sich in der Regel innerhalb weniger Wochen amortisiert.“

DIY-Bausatz lässt sich ohne Vorkenntnisse schnell zusammensetzen

Das Raumportal erhält der Käufer als DIY-Bausatz. Bestandteile sind zwei Zahnriemenachsen und eine Zahnstangen-Auslegerachse mit Schrittmotoren und einem Aktionsraum von 2000 x 2000 x 1500 Millimeter. In der Maximallänge sind auch bis zu 6.000 x 6.000 x 1.500 Millimeter möglich. Zusätzlich ist im Paket ein Schaltschrank, Leitungen und Energieketten sowie die kostenlose Steuerungssoftware igus Robot Control (iRC) enthalten. Anwender können die Komponenten in wenigen Stunden zu einem betriebsfertigen Linearroboter zusammensetzen – ohne externe Hilfe, ohne Vorkenntnisse und ohne lange Einarbeitungszeit. Und werden noch zusätzliche Komponenten wie Kamerasysteme oder Greifer benötigt, so werden Anwender auf dem Robotik-Marktplatz RBTX schnell fündig.

Automatisierung entlastet Mitarbeiter

Zum Einsatz kommt der kartesische Roboter beispielsweise an Förderbändern, die Produkte von Spritzgussmaschinen abtransportieren. Hier nimmt der Roboter Artikel mit einem Maximalgewicht von 10 Kilogramm vom Band, transportiert sie mit einer Geschwindigkeit von bis zu 500 mm/s und positioniert sie mit einer Wiederholgenauigkeit von 0,8 Millimeter auf einer Palette. „Dank dieser Automatisierung können Betriebe ihre Mitarbeiter von körperlich anstrengenden und zeitaufwendigen Palettier-Aufgaben entlasten und Ressourcen für wichtigere Aufgaben gewinnen.“ Das System selbst verursacht dabei keinen Wartungsaufwand. Die Linearachsen bestehen aus korrosionsfreiem Aluminium, die Schlitten bewegen sich über Gleitlager aus Hochleistungskunststoff, die dank integrierter Festschmierstoffe über viele Jahre einen reibungsarmen Trockenlauf ohne externe Schmiermittel ermöglichen – selbst in staubigen und schmutzigen Umgebungen.

Digitaler Roboter 3D-Zwilling ermöglicht kinderleichte Programmierung

Doch nicht nur die Montage, sondern auch die Programmierung von Bewegungsabläufen stellt kein Einstiegshindernis dar. „Für viele Betriebe, die keine eigenen IT-Fachkräfte haben, ist die Programmierung von Robotern oft mit Problemen besetzt“, so Mühlens. „Wir haben deswegen mit der iRC eine kostenlose Software entwickelt, die optisch an häufig genutzte Office Software erinnert und eine intuitive Programmierung von Bewegungen ermöglicht. Das Besondere: die Software ist kostenlos und die so entstehende Low-Code-Programmierung kann dann 1:1 am realen Roboter verwendet werden.“ Herzstück der Software ist ein digitaler Zwilling des Raumportals, über den sich Bewegungen mit wenigen Klicks festlegen lassen. Auch im Vorfeld, bevor der Roboter in Betrieb ist. „Interessenten können vor dem Kauf anhand des 3D-Modells prüfen, ob gewünschte Bewegungen tatsächlich realisierbar sind. Zusätzlich laden wir alle Interessen ein, unsere Roboter live oder über das Internet kostenfrei auszuprobieren. Wir unterstützen sie bei der Inbetriebnahme und zeigen, was alles mit Low-Cost-Robotern möglich ist. Die Investition wird dadurch nahezu risikofrei.“