fruitcore robotics – Industrieroboter HORST zeigt Fingerspitzengefühl

HORST kann auch feinfühlig 🙂 In diesem Video transportiert Industrieroboter HORST900 mit dem RG2 von OnRobot Sushi und Eier und zeigt uns dabei sein Fingerspitzengefühl.

Mehr Informationen über HORST und fruitcore robotics:

Robot Race: The World´s Top 10 automated countries

Jan 27, 2021 — The average robot density in the manufacturing industry hit a new global record of 113 units per 10,000 employees. By regions, Western Europe (225 units) and the Nordic European countries (204 units) have the most automated production, followed by North America (153 units) and South East Asia (119 units).

The world´s top 10 most automated countries are: Singapore (1), South Korea (2), Japan (3), Germany (4), Sweden (5), Denmark (6), Hong Kong (7), Chinese Taipei (8), USA (9) and Belgium and Luxemburg (10). This is according to the latest World Robotics statistics, issued by the International Federation of Robotics (IFR).

“Robot density is the number of operational industrial robots relative to the number of workers,” says Milton Guerry, President of the International Federation of Robotics. “This level measurement allows comparisons of countries with different economic sizes in the dynamic automation race over time.”

The country with the highest robot density by far remains Singapore with 918 units per 10,000 employees in 2019. The electronics industry, especially semiconductors and computer peripherals, is the primary customer of industrial robots in Singapore with shares of 75% of the total operational stock.

South Korea comes second with 868 units per 10,000 employees in 2019. Korea is a market leader in LCD and memory chip manufacturing with companies such as Samsung and LG on top and also a major production site for motor vehicles and the manufacturing of batteries for electric cars.

Japan (364 robots per 10,000 employees) and Germany (346 units), rank third and fourth respectively. Japan is the world´s predominant robot manufacturing country – where even robots assemble robots: 47% of the global robot production are made in Nippon. The electrical and electronics industry has a share of 34%, the automotive industry 32%, and the metal and machinery industry 13% of the operational stock. Germany is by far the largest robot market in Europe with 38% of Europe’s industrial robots operating in factories here. Robot density in the German automotive industry is among the highest in the world. Employment in this sector rose continuously from 720,000 people in 2010 to almost 850,000 people in 2019.

Sweden remains in 5th position with a robot density of 274 units operating with a share of 35% in the metal industry and another 35% in the automotive industry.

Robot density in the United States increased to 228 robots. In 2019, the US car market was again the second largest car market in the world, following China, with the second largest production volume of cars and light vehicles. Both USA and China are considered highly competitive markets for car manufacturers worldwide.

The development of robot density in China continues dynamically: Today, China’s robot density in the manufacturing industry ranks 15th worldwide. Next to car production, China is also a major producer of electronic devices, batteries, semiconductors, and microchips.

The RepRap Project – An open source 3D-printer for less then 500€

Everybody who has ever designed and built a robot by him self knows about the difficulty by building special components like sensor holders, adapters or axes bearings . Either you have to pay a huge amount of money to a company that is willing to build small product series on it or , which is more common you build them by your self and spend a lot of time on prototyping and manufacturing tasks, and then build it by hand. For the last option the  usage of a 3D-printers can speedup the process.

Generally spoken is a 3D-Printer an industrial robot with several degree of freedoms, that is moving an extruder and injects either plastic or metal in a way that a plastic or metal object (the prototypes)  are created. This technology allows therefore to print physical objects. By using this technology, the coast of one object/prototype are dramatically shrinking. More or leas the coast of one object is given by the material coasts and the time which is needed to build a CAD-Design of the object.

The major drawback of 3D-Print is the acquisition costs. Professional printer can easily coast more then 20.000€. But there is hope. The open source project RepRap allows us to build our own 3D-Printer by coast round about 500€. RepRap stands for Replicating Rapid-prototyper and is a hardware open source project. Like the big industrial machines does this project support a easy way do build your first prototypes.

RepRap from Adrian Bowyer on Vimeo.

Mendel’s improvements over Darwin from Rep Rap on Vimeo.
Of course there is also darkness. The RepRap-hardware is currently on the state of the industrial machines from 5 years ago. For example does the open source version not support to printing two type of material simultaneously. But this is extremely usefully if you have to build object with huge holes, which would collapse if there is no filling material inside that will be removed later.

But still this technollogy makes prototyping that easy and quick that it is worth to give it a try.


The „Elektrischer-Reporter“ (German) has a reportage of the background and the ideas for the close future on 3D-Printing and homemade products. The basic stadement is an upcoming change of production lines. Every customers will be also a small factory and an upcoming market of „digital construction plans“ will showup.