Spy v. sPi by Dexter Industries

Dexter Industries launches a fun educational game that coaches kids to solve problems by challenging them to accomplish secret missions called Spy v. sPi. Dexter Industries, a growing U.S. educational robotics company developed Spy v. sPi, a capture-the-flag style engineering adventure that puts real purpose to basic design and programming skills. It can be played individually at home, or in teams in a classroom or a workshop. In it, every “spy” is assigned a series of missions, each requiring them to write code to control an assortment of sensors that will allow them to protect their “jewel” in different ways, or capture the “jewel” of a competing spy.

Spy v. sPi is based on the GrovePi, an easy-to-build robot kit that includes a rich collection of programmable, plug-and-play components — from sensors for things like distance, sound, light, and infrared, to buttons, buzzers and more. Thanks to the GrovePi’s combination of hardware and software, Spy v. sPi makes it easy to connect to a robot, start writing code, and get rewarding results right away.

We’ve developed Spy v. sPi’s missions with a full range of skills and experience in mind, so no prior programming or electronics experience is required. Each Spy will learn how to program the different sensors and components with step-by-step instructions, all while completing a mission. There are also missions for more advanced spies, and there’s no limit to how complex your solutions can get. Best of all, the entire program is designed by actual spies, so players will face real-life engineering challenges they’ll solve just like real spies do.
Spy v. sPi is designed for everyone — so we have two different programming languages you can use. Scratch is for beginners, and is a drag-and-drop programming language developed by MIT. Python is available for more advanced spies, and is an open source text-based programming language. The Missions are step-by-step instructions that first teach you the basics of Scratch and then help you move on to more advanced programming in Python.

Spy v. sPi Missions are activities in the form of a mission. Each spy will learn how to program the GrovePi and an assortment of sensors to accomplish different objectives, all within a story created by real spies! The Missions will come in a beautifully designed and illustrated full color printed booklet and online videos. It includes space to work on ideas and plan your solution to the challenge, as well as all the information you need to be a successful spy.

We believe the best way to learn is by doing — building something tangible to solve real world problems. Some learners thrive in a competitive environment, and for them, Spy v. sPi is perfect: you can play in teams or against an opponent. For solo learners or those that want a family game to play at home — some spies might want to equip their room with a spy device or alert them of entry by a sibling. Spy v. sPi Missions support both styles of learning and are fun for everyone! Learn more at dexterindustries.com/spy.

GadgetBox – Affordable, Open-Source Robotics for Children 9 – 15 years

The GadgetBox crowd-funding campaign runs until October 14th 2016 with a required minimum target of $50,000 US. You can help by making a contribution. More importantly, please spread the word to others who may wish to support.

GadgetBox is an educational robotics kit, which will enable children 9 – 15 years to participate in a variety of hands-on activities linked to Science, Technology, Engineering and Mathematics (STEM). Pre-university STEM education has been identified as one strategic approach to preparing children for active participation in the changing technology landscape.

The requirement for GadgetBox, became evident while using commercial educational robotics kits in pre-university STEM activities such as construction, programming, and operation of a simple robot.  Price, maintenance, availability, and support requirements were cited as key reasons why successful initiatives have failed to gain widespread traction and visibility.


GadgetBox was created to address these issues; specifically by:

  • selecting the smallest sub-set of components that could facilitate basic activities when supplemented with items/materials readily accessible to children;
  • selecting, where possible, components readily available in local hardware stores;
  • providing guideline(s) to adapt/re-use sensor/actuator elements from local e-waste;
  • programming using a smartphone instead of a computer

Campaign funds will allow Edubots Engineering to produce a minimum of 20 kits, while concurrently testing curriculum exercises, and developing learning activities for upcoming school trials and robotics workshops in early 2017.

“We want to test GadgetBox, alongside commercial educational robotics kits in 2017. To do so, we must replicate and distribute the prototype – that takes funds.” – Cathy Radix, Robotics in Education, Edubots Engineering

GadgetBox was created using Open Source Hardware and Software to minimise development time, but also to enable children to design, build, and share designs for GadgetBox accessories.

“Because we believe that there is always room for improvement, we anticipate further modifications to GadgetBox based on feedback from users.“— Jeevan Persad, Fasove, Edubots Engineering

The improved GadgetBox designs, and online support forums, will be available to the public by early 2018.

Crowd-funding Campaign: https://igg.me/at/gadget-box/x

SubPos Ranger: Indoor Positioning System

The SubPos Ranger is as an open source indoor positioning system to be used for robotics applications in the education and hobbyist markets. It has primarily been designed as a flexible radio frequency platform for experimenting and tinkering, that allows you to not only obtain positioning and perform distance measurements, it can also be used for passive motion detection as well as communication between embedded devices.

While there are many positioning systems on the market, the Ranger has been created to be extremely cost effective, easy to use and develop for. While other systems are usually locked down in one way or another, whether that be functionality or availability of source code, the Ranger is completely open and flexible. Perfect for the budding hobbyist to invent the next big thing.

The Ranger is fully operational and ready for manufacture, and a complete system can be had for $274AUD (~$210USD), which gives you 3D positioning in a room, as well as a receiver to output the position. Once set up, the system can give up to +-10cm of accuracy. Other options are also available to experiment with too, such as a cheaper option for two nodes to perform distance measurements and motion detection, or a Wi-Fi support add-on.

Key Features:
•        Supports 2D and 3D Positioning – not just x and y, but z also.
•        2.4GHz ISM Spectrum – supported worldwide.
•        Standards Compliant Hardware – supports 802.15.4 and can also utilise Zigbee or 6LoWPAN communication protocols.
•        Reconfigurable RF Chipset – enables many different 2.4GHz ISM applications.
•        Firmware Updates over USB – no need for any extra programming hardware.
•        Open Source Hardware and Software – hack, repurpose and play to your heart’s content.
•        Modular Design – the Ranger allow all sorts of connectivity options. You can connect it to anything such as a Raspberry Pi via USB or GPIO, Arduino or to your smartphone via Wi-Fi.
•        Low Level Raw Data and Parameters – access to all low level measurement data and parameter tweaks are available to discover interesting new applications (such as motion detection).
•        Node Position Calibration – get the position of nodes automatically; no manual fixed node measurements required.
•        9-Axis Accelerometer – the client expansion board contains a 9 axis accelerometer for increased positioning accuracy.

Board Image – https://cdn.hackaday.io/images/7007401465041329447.jpg
Client Image – https://cdn.hackaday.io/images/3158211465041337828.jpg

Entrepreneur turning hobby into novelty toy and apparel company

GREENSBORO, NC — After graduating from college, designer and maker, Charles Wade, began his hobby by making unique animal stickers, which later morphed into woodcraft and papercraft creations. During a test for one of his woodcrafts he designed and built a poseable wooden robot. The Helper Bot was born.

With the creation of the Helper Bot, Wade began experimenting with other ideas. After receiving feedback and appreciation for his work, he created more robots and designed assembly kits that would allow others to build his creations.

Wade has cultivated his hobby into a career by establishing RoboMustache; a collection of wooden robot assembly kits, accessories and merchandise. More than a collection of novelties, the RoboMustache hints at a rich world of storytelling as well. Coined from a found project in a derelict factory, as the company grows, so will the RoboMustache universe. The story will expand to tell more about the existing robots and bring in new robots along the way.

Wade is crowdfunding the project to take the RoboMustache universe to the next level. The Kickstarter launched Dec. 4, 2015 and runs through the new year.

Drone or Rover – New System Lets You Decide

Rocketship Systems Inc. releases BoxBotix, a new 3D printable robotics system that supports multiple configurations, including copter, plane and rover.

BoxBotix is an open source, modular robotics framework that is designed to be easy to hack, make, use and sustain. BoxBotix is the creation of Rocketship Systems Inc., a small robotics company in Fort Collins, CO.

“We run a small shop that machines robot parts, and we get a lot of calls from customers who have a new sensor or technology they want to test, but no robot to put them on,” says Coby Leuschke, President of Rocketship Systems. So for the last two years they have been designing and testing a new system to meet these needs. BoxBotix is the result.

Leuschke continues, “We have seen many different drone and robot systems emerge in the last year that try to meet the demands of a growing industry, but most are mass produced and difficult to customize. We wanted to create a system that allows people to move the design, build, maintenance cycle closer to the point of use, so they can control their own robot destiny. ” In order to meet these requirements BoxBotix has been designed to be built using desktop 3D printing and readily available parts and tools. Garrett Day, Rocketship Systems Lead Engineer adds, “We are releasing all of our design files under an open source license, so we can provide people the opportunity to modify the design to meet their specific needs, and help improve the overall design.”

The initial release of BoxBotix will feature robots, called BBots, which include the BBCopter, BBPlane and BBRover. Rocketship Systems will provide kits in two versions: A Bring Your Own Printer Kit, where they will provide everything needed to build a frame, excluding the printed parts, and they will also provide a Full Frame Kit that will include everything required to build the frame.

“BoxBotix is not about Rocketship Systems building a million robots. BoxBotix is about enabling a community of a million people to build their own robots,“ Leuschke concludes.

In order to fund the creation and growth of a strong open source community BoxBotix has taken to Kickstarter. To follow their project, be sure to find them on Twitter , Facebook or YouTube, and spread the word to your social media networks. Consider donating as little as $1 to help their project come to life. If you decide to donate more, you can be among the first in the world to build a BBot.

Personal Intelligent Robots with Android Phone and LEGO

ELFi Robotics startup by Google Science Fair finalist Mark Drobnych is now on Kickstarter


28 of October 2015 – New startup ELFi Robotics based in Ukraine announced today that it is raising funds via  rewards crowdfunding campaign on Kickstarter to finish the development of their revolutionary Android apps for robotic applications. The company set out to raise £33,000 on KickStarter to finish development of innovative software platform for DIY smart robots built with wide-accessible construction sets of Lego, Tetrix, Arduino and Raspberry Pi .

ELFi Robotics offers a Minimal Viable Product – Robotic Platform for learning and building intelligent robots. This platform comprises of: Brain App for Android (iOS soon), Robots, Platform Tools, RoboMarket, Training program.

ELFi Brain App is a robotic brain which can be installed on Android device and connected to LEGO EV3, Arduino or Raspberry Pi controllers. So any LEGO Robot can receive its missed brain from now on!

ELFi Educational Program covers both hardware and software aspects required to understand basics of robotics. Both aspects start from very simple patterns and don’t assume any previous experience in robotics. ELFi Robotics WorkBook and Building Instructions Book by Mark allow a quick start for any beginner.

The powerful concept of RoboMarket and “Robotics for programmers”  book allows third-party developers to write applications for ELFi Robots and even sell them.

According to Mark Drobnych, 15 years old CEO of ELFi robotics: “Our main target is to provide robots to everybody. Nowadays, real robots are really expensive and rare. I think it’s time to enter  the new era of technologies. Build your own robot, with own design, and own set of functions! Our Brain app and platform are flexible enough to support new robotics ventures.”

The story begun two years ago when 13-years old Mark Drobnych worked on his personal scientific research: School Presentation of  Microscope. The results of this work were presented at the Final of Google Science Fair 2014 in Mountain View, California. As functions of microscope started being more complex Mark had an idea to create an universal Robotic Brain on top of Android operating system. This Brain had to create human-friendly spoken interface not only for his Presentation of Microscope but for ANY ROBOTIC BODY built with Lego, Arduino, Tetrix or Raspberry Pi parts. It was ELFi birth.

To enforce his progress on software part Mark involved his dad, Oleksiy Drobnych, PhD, into the project as an experienced software engineer.

In the UK Mark is represented by Androcommerce Ltd., registered in England family firm focusing on mobile e-commerce offering.

InnoTechnix launches Maximo Robot Arm on Kickstarter starting at Only 199$USD

SAINTE-ADELE, QuebecSept. 22, 2015PRLog — InnoTechnix a robotics company, announced the launch of its new crowdfunding campaign on Kickstarter for Maximo Robot Arm. Maximo is a 5-axis robotic arm for all ages designed to be an affordable way to discover robotics.


Maximo is our second generation of robotic arms. Three years ago, we created MandleBot, a 5-axis aluminum robotic arm currently being used in schools, robotics clubs, summer camps and even factories. We have enjoyed sharing our passion for robotics with a lot of people and it has inspired us to now do it on a larger scale. The new Maximo features a completely updated and optimized design to make it easier to use.


Maximo is an Arduino-driven, 5-axis robotic arm with a laser-cut acrylic body. The robot comes with Robotic Studio, an InnoTechnix software program developed in-house that allows the user to control the arm with a gamepad or program a series of recorded steps to execute complex automations. Up to 10 robots can be connected at the same time in Robotic Studio. Maximo only requires a screwdriver to assemble and can easily be customized with attachments. Several head modules are available to expand the abilities of the arm. It is a great solution for schools to motivate students to learn more about robotics and science.

You can follow us on Facebook https://www.facebook.com/InnoTechnix and Twitter https://twitter.com/innotechnix with the hashtag #MaximoRobotArm


About InnoTechnix Inc.: InnoTechnix (http://www.itnx.com/) was launched in 2011. The company has since developed a variety of robotic arms, custom claws, talking robots, smart clocks and mobile robots. InnoTechnix designs the robots, manufactures all parts and develops the robotics software. InnoTechnix robots have appeared on television programs like Dragon’s Den, Mr.Net, Entrée Principale, Cogeco TV and a TV ad for the Ford Focus.

InnoTechnix previously successfully achieved a Kickstarter campaign for another robotics project. The company created a diy product inspired by the useless machine invented by MIT professor Marvin Minsky at Bell Labs in 1952. The goal was to create a product that people would assemble themselves and learn about electronics along the way. It was called the Useless Can. The campaign was successfully funded by 427 backers who pledged a total of $27,011. The idea to launch a new Kickstarter campaign for Maximo came while manufacturing the Useless Can. I realised that crowdfunding on Kickstarter had the potential to bring this longtime project of mine to a much larger scale.

Robo Wunderkind launches on Kickstarter

San Francisco, September 24, 2015 – Robo Wunderkind is a programmable robotics kit for children of all ages. On Monday, September 21, it was launched on Kickstarter, with early bird pledges starting from just $79. Robo Wunderkind is revolutionizing how coding is taught through robotics. Kids of all ages find it easy and enjoyable to play with!

Robo Wunderkind is a set of blocks for building robots. On the outside, Robo blocks are child friendly and safely encase the sophisticated electronics contained on the inside. These electronic components transform regular blocks into programmable robotic components. By just snapping blocks together, even a five year old can build a robot. The fun doesn`t stop there: kids can playfully program the robot in an intuitive app. Modular, colorful, and LEGOTM compatible, this is the toy that opens up children`s eyes to the world of technology.

Kickstarter link: https://www.kickstarter.com/projects/startrobo/robowunderkindaprogrammablerobotforkidsofa

Rustem Akishbekov, the founder and CEO of Robo Wunderkind, initially came up with the idea of a child-friendly programmable robot while trying to teach his friends the basic of coding and robotics. When he realized how complicated it was for new-to-programming users, he set out to make learning coding and robotics as fun and simple as playing with LEGOTM.

“We want to revolutionize the toys our kids play with, we want them to be more than pieces of plastic,” explains Rustem Akishbekov. “The LEGOTM brick hasn`t changed over 60 years while everything around it has. Now is the time for a smart toy like Robo Wunderkind that will help kids develop the skills they need for the future.”

Robo Wunderkind connects to Android and iOS devices via Bluetooth. Kids can use the app’s visual drag-and-drop interface to program it. This early learning method means that children aren´t hindered if their reading level is still developing. Once children have mastered the basics of coding, they can move on to program their robot with Scratch, a fun programming language for kids developed at MIT.

Robo Wunderkind is unique because children need not have any prior programming experience to get going. Furthermore, the cubes‘ magnet-free and secure connection system makes Robo Wunderkind stand out from the crowd. Robo Wunderkind’s innovative design has been turning heads in Europe, earning robotics award from Futurezone and the German robotics company Festo, as well as multiple startup awards.

Robo Wunderkind comes in three sets. Kickstarter prices started at $79. There is a sliding price scale depending on the cube quantity and complexity. The cubes’ colors relate to their function: red is a proximity sensor, blue is a motor, orange – the main controller, and so on. The most advanced set comes with a digital camera and a weather sensor. With these special functions, your children can give weather forecasts or even surprise you with their first filming endeavors. Robo Wunderkind has been designed so that flat LEGOTM adaptors can be attached, making the blocks compatible with LEGOTM. Children can then personalize the robots they have built with LEGOTM blocks or figures.

Anna Iarotska, COO and Head of Business Development at Robo Technologies says, “Kickstarter is the perfect place to launch Robo Wunderkind, as it hosts a community of people who value innovation, creativity, and fun. We look forward to seeing what the kids out there will build with Robo Wunderkind”.

With their Kickstarter campaign, which will run until October 29, the team is hoping to raise $70,000. The funds they raise will go directly towards producing the very first batch of robots, with shipping scheduled for Summer 2016.

About Robo Technologies, Inc.

Rustem Akishbekov founded Robo Technologies, Inc and brought Anna Iarotska and Yuri Levin on board in 2013. The company is based in Vienna, Austria and San Francisco, California. The founders have gathered together a team of passionate engineers and designers who have been working on the project for two years.

In the summer of 2014, the team was part of the first worldwide hardware accelerator HAX. The progress made there was incorporated into Robo, earning them the „Robot of the Year“ Award from Festo and the Austrian Startup of the Year Award.

Dobot: Bring Industrial Precision To Low Cost Robots

Unsatisfied by low cost, low precision and poor functionality desktop robotic arms on the market, a group of six hardcore robot makers decided to quit their high-paying industry jobs, and build their own. Named its first product Dobot, the team’s mission is to bring industrial precision to consumer, affordable robotic arms that can actually DO the job.

Fully designed and assembled in China, a new desktop, 4-axis, stepper motor, high precision robotic arm Dobot is launching its first Kickstarter campaign on September 15th, 2015 (Beijing Time).


The robot has tackled a series of technical difficulties struggled by other analogs. Here’s a list of its feature highlights:


  • High mechanical accuracy (0.02mm)
  • High repeat precision (0.2mm), 50 times better than uArm
  • Stepper motor equipped with high accuracy reducer
  • High strength aluminium alloy surface and processed by anodic oxidation treatment
  • Mechanical structure assembled by the state of art CNC cutting technology, ensuring its superb agility, stability and durability
  • Seven control methods including PC, mobile app, voice, vision, leap motion, geature and EEG (mind control, see demo: https://www.youtube.com/watch?v=RxU7ZhStuPA)
  • Easy click-and-drag control interface for beginners and also programmable for advanced makers, using Processing, Arduino, and C/C++ as primary languages
  • Affordable price starting with $399


For making it even more friendlier to both makers and the general public, Dobot’s design is well-fit for desktop applications, see its tech specifications:

  • Number of Axes: 4
  • Weight: 3kg
  • Payload: 500g
  • Range: 270 degree rotation
  • Position repeatability: 0.2mm
  • Material: aluminium alloy 6061
  • Controller: Arduino Mega2560
  • Communication: UART/Bluetooth
  • Power Supply: 12V 5A DC


The team has premiered its prototype at the 2015 Shenzhen Maker Faire, and has received positive feedback from makers, robot experts and open hardware communities ever since. “…the motion is really precise…it’s not just a toy, it can also be used to build stuff.” Says the CEO of Arduino, Massimo Banzi. On the popular DIY sharing platform Instrucables, its step-by-step instruction on building a robotic arm has received more than 23k likes in the first four days and got featured on the first page.


Upon their launch on Kickstarter, the team is very optimistic on the future performance of Dobot, marching their way to helping the world’s robot lovers to explore the beauty excitement of making stuff.


About the Team

The team was founded in June 2014 by a group of industrial robot engineers based in Shenzhen. The team’s CEO, Jerry (Peichao) Liu, and the head of engineering Art (Xulin) Lang both graduated from Shandong University in mechanics engineering. Jerry received its Masters from China Academy of Sciences, majoring in mechanics engineering and joined a robot company focusing on industrial robots for medical applications. Art during his Masters program, solely designed Delta parallel manipulator, Scara robot and a few others. After school, as the head of Scara robot project, he worked with Foxconn. All the founders all acquired extensive industry experience in robotics before joining the team. They have deep belief in bringing industrial precision robots to everyone’s desktop and in the future will launch a series of new models.

WiFi DyIO Robotics Controller and BowerStudio Software

*Kickstarter launching on September 15, 2015 at

The WiFi DyIO (dynamic input and output device) is a wireless
micro-controller with 24 channels for robots, precision lasers, medical
equipment, 3D printers, motors, cameras, data sensors and more. With the
second generation WiFi DyIO, you can control all your devices with a
computer or Android phone—even with little programing knowledge. And
because WiFi DyIO simply coordinates the processors on your computer
wirelessly to your robot, it operates with JAVA programing language from
across the room, or around the globe.

The controller works seamlessly with Neuron Robotics Cooperative’s
<https://neuronrobotics.com> free, open-source
software, BowlerStudio, which allows the virtual design and testing of
different robotics systems and parts. There are powerful modeling tools for
adept programmers, as well as easy-to-use, customizable templates for
first-time designers. Features include coordination with 3D printers to
quickly and effortlessly print custom limbs, bodies and other parts.

The DyIO/BowlerStudio system is simple and intuitive for classroom lessons
with 8-year-olds, and powerful enough for a Ph.D robotics engineer. Its
software was used to perform surgery within an MRI
and the DyIO itself is used to teach classes at Worcester Polytechnic

DyIO and BowlerStudio have been featured on 3DPrint.com, 3ders.org and is a
semifinalist for the Hackaday Prize.

The first generation, USB-connection DyIOs are available at Microcenters
throughout the U.S. and are being used in college and grade school
classrooms. In order to take the functional WiFi-enabled prototype into
production, Neuron Robotics Cooperative is looking to Kickstarter for