modl.ai closes €8.5m Funding for AI Engine to Unleash Bots and Transform Game Development

COPENHAGEN, Denmark—November 2022—modl.ai, which seeks to remove the shackles of game development with a transformative AI engine, announced today it has closed Series A funding of €8.5m with lead investor Griffin Gaming Partners and M12 – Microsoft’s Venture Fund. The company received additional participation from Rendered.vc, PreSeed Ventures, and Transistormedia.

The modl.ai AI engine is redefining game development by equipping developers with an essentially unlimited army of bots that can adapt to various playing styles, employ dynamic moves and tactics. This gives developers power to enhance automation and remove the redundancies and manual efforts that often stymie and delay the release of new games and updates by months or even years.

Pierre-Edouard Planche, Partner at Griffin Gaming Partners, said: „Gaming is one of the trickiest user experiences for which to automate testing, and it therefore requires an utmost degree of technical talent and research combined with direct experience working in games. This is why we are very excited to be backing Christoffer, Lars, Benedikte, and the modl.ai team to help streamline a growing pain and multi-billion-dollar industry expense that is top of mind for many game developers.“

Carli Stein of M12 added: “At M12, we’re excited about the impact modl.ai will have on the gaming industry, allowing game developers to focus on the parts of development they love, while automating the costly, time-consuming, and manual processes they don’t,” said Carli Stein, an investor at M12. “When we met Christoffer and the modl.ai team, we knew they had the right combination of highly technical domain expertise, coupled with a product suite that has the potential to revolutionize game development as we know it.”

modl.ai was founded by a talented team of game developers, engineers and AI experts led by CEO Christoffer Holmgård, who saw the opportunity to use AI to automate and improve multiple aspects of the game development process. Between them, the company founders have developed and launched more than 30 games for PC, Mac, Playstation, Xbox, Switch, Apple Arcade and further platforms.

“We started modl.ai to build the tools and technology we always wished we had as game developers,” said Christoffer Holmgård, CEO and Co-Founder. “In 2018, we decided that the timing was right, both for technology and the market. The founders had worked together in games and AI for more than a decade, always discussing how we could bring advanced AI to game developers broadly, offering something completely new to the industry that we love. All games are unique, creative works, but they share production needs and technological characteristics. That’s why the games industry is becoming increasingly modular and standardized. This is a good thing, and we want to be the de facto AI Engine for as many games as possible.”

With the new funding, the company will expand its reach to make the AI Engine available to developers worldwide. With simple setup, developers will get access to AI players – to not just test and balance their games but also have access to customizable bots who will play their game with or against their player base. modl.ai’s AI Engine works with the major publicly available game engines such as Unity and Unreal Engine and can be extended to support any modern game engine.

modl.ai’s AI Engine drives bots for games, enabling AI players that test, evaluate, and even play games in the place of human players. The market for testing and quality assurance in games alone is several billion dollars, and the need for bot players has become crucial in a multiplayer focused $200Bn+ industry.

The games industry is on the cutting edge of technology and innovation; however much of the game development process is highly manual. This means significant creative potential with highly skilled developers, as well as precious speed to market, is lost to rote work and monotonous daily routine. modl.ai is on a mission to change this, building an AI Engine that frees developers to focus on creating, by automating the parts of the game development process that are repetitive and time consuming through AI players.

„Game testing is an endemic, universal, yet overlooked pain point in the industry that has material impact on studio operations, profitability, and title performance. Automation solutions have not emerged due to the complex nature of games and unique design. We strongly believe that modl.ai is the breakthrough team to tackle this moonshot opportunity and, in doing so, is positioned to build a powerful AI platform developed for 3D environments that can grow beyond games,“ stated Jiten Dajee, Rendered VC.

“At PreSeed Ventures, we know it’s all about a few individuals with a rare set of traits and the right mentality to move the needle and modl.ai’s CEO, Christoffer Holmgård is one of those people,” said Mads Klarskov Petersen, COO of PreSeed Ventures. “modl.ai has not only attracted top talent within the space, 12 PhDs from applied AI in games, but has proven the growing importance that AI plays across different aspects of modern game development. Moreover, Christoffer is one of our favorite examples of how a Danish startup can attract international talent and investors, by building a unique technology and sticking to its purpose: helping developers to enhance and increase player engagement no matter the market direction.”

ABOUT modl.ai

Headquartered in Denmark, modl.ai is a four-year-old company that is transforming the game development market with its state-of-the-art AI Engine and machine learning models. Staffed by many of the industry’s best and brightest, modl.ai currently ranks second in the world among private companies for the number of technical game publications its team has collectively authored. With modl.ai’s engine and game-playing bots, testing, evaluation, overall game development and speed to market will never be the same. „If anyone can bring games AI research to the industry and succeed, this is the team“ – Ken Stanley, OpenAI alum.“ For more please visit modl.ai.

World Robotics Report: “All-Time High” with Half a Million Robots Installed in one Year

IFR presents World Robotics Report 2022 #WorldRobotics

Frankfurt, Oct 13, 2022 — The new World Robotics report shows an all-time high of 517,385 new industrial robots installed in 2021 in factories around the world. This represents a growth rate of 31% year-on-year and exceeds the pre-pandemic record of robot installation in 2018 by 22%. Today, the stock of operational robots around the globe hits a new record of about 3.5 million units.”

“The use of robotics and automation is growing at a breathtaking speed,” says Marina Bill, President of the International Federation of Robotics. “Within six years, annual robot installations more than doubled. According to our latest statistics, installations grew strongly in 2021 in all major customer industries, although supply chain disruptions as well as different local or regional headwinds hampered production.”

Asia, Europe and the Americas – overview

Asia remains the world’s largest market for industrial robots. 74% of all newly deployed robots in 2021 were installed in Asia (2020: 70%).

Installations for the region´s largest adopter China grew strongly by 51% with 268,195 units shipped. Every other robot installed globally in 2021 was deployed here. The operational stock broke the 1-million-unit mark (+27%). This high growth rate indicates the rapid speed of robotization in China.  

Japan remained second to China as the largest market for industrial robots. Installations were up 22% in 2021 with 47,182 units. Japan’s operational stock was 393,326 units (+5%) in 2021.
After two years of declining robot installations in all major industries, numbers began growing again in 2021. Japan is the world´s predominant robot manufacturing country: Exports of Japanese industrial robots achieved a new peak level at 186,102 units in 2021.

The Republic of Korea was the fourth largest robot market in terms of annual installations, following the US, Japan and China. Robot installations increased by 2% to 31,083 units in 2021. This followed four years of declining installation figures. The operational stock of robots was computed at 366,227 units (+7%).

Europe

Robot installations in Europe were up 24% to 84,302 units in 2021. This represents a new peak. Demand from the automotive industry was steady, while demand from the general industry was up by 51%. Germany, which belongs to the five major robot markets in the world, had a share of 28% of total installations in Europe. Italy followed with 17% and France with 7%.

The number of installed robots in Germany grew by 6% to 23,777 units in 2021. This is the second highest installation count ever recorded, following the peak caused by massive investments from the automotive industry in 2018 (26,723 units). The operational stock of robots was calculated at 245,908 units (+7%) in 2021. Exports of industrial robots from Germany were up 41% to 22,870 units, exceeding the pre-pandemic level.

Italy is the second largest robot market in Europe after Germany. The main growth driver between 2016 and 2021 was the general industry with an annual average growth rate of 8%. 
The operational stock of robots was computed at 89,330 units (+14%) in 2021. The 2021 results were driven by catch-up effects and earlier purchases due to a reduction of tax credits in 2022. This created a 65% increase of robot installations to a new record level of 14,083 units in 2021.

The robot market in France ranked third in Europe in 2021 regarding annual installations and operational stock, following Italy and Germany. In 2021, robot installations increased by 11% to 5,945 units. The operational stock of robots in France was calculated at 49,312 units, a 10% increase over the previous year.

In the United Kingdom, industrial robot installations were down by 7% to 2,054 units. The operational stock of robots was calculated at 24,445 units (+6%) in 2021. This is less than a tenth of Germany´s stock. The automotive industry reduced installations by 42% to 507 units in 2021.

The Americas

In 2021, 50,712 industrial robots were installed in the Americas, 31% more than in 2020. This is a remarkable recovery from the pandemic dip in 2020 and the second time that robot installations in the Americas exceeded the 50,000-unit mark, with 55,212 units in 2018 setting the benchmark.

New installations in the United States were up by 14% to 34,987 units in 2021. This exceeded the pre-pandemic level of 33,378 units in 2019 but was still considerably lower than the peak level of 40,373 units in 2018. The automotive industry is still by far the number one adopter with 9,782 units installed in 2021. However, demand had been continuously declining for five years (2016-2021). In 2021 installations were down 7% compared to 2020. Installations in the metal and machinery industry surged by 66% to 3,814 units in 2021, putting this industry into second place in terms of robot demand. The plastic and chemical products industry had 3,466 robots (+30%) newly installed in 2021.  The food and beverage industry installed 25% more robots, reaching a new peak level of 3,402 units in 2021. The robotics industry offers hygienic solutions that experienced growing demand during the Covid-19 pandemic.

Outlook

Rising energy prices, intermediate product prices and scarcity of electronic components are challenging all branches of the global economy. But order books are full and demand for industrial robots has never been higher. In total, global robot installations are expected to grow by 10% to almost 570,000 units in 2022. The post-pandemic boom experienced in 2021 is expected to fade out in 2022. From 2022 to 2025, average annual growth rates in the medium to upper single-digit range are forecast.

Orders for World Robotics 2022 Industrial Robots and Service Robots reports can be placed online. Further downloads on the content are available here.

AGILOX introduces new ODM robot

AGILOX expands its product portfolio with an intelligent dolly mover

With the new AGILOX ODM, the AMR manufacturer is targeting a completely new area of application: the transport of small load carriers.

After AGILOX ONE and AGILOX OCF, now comes AGILOX ODM. The company, which specializes in logistics robots, is adding an autonomous dolly mover to its range of intelligent transport systems controlled by swarm intelligence. AGILOX is thus targeting a completely new area of application: the transport of small load carriers.

AGILOX is expanding its range of Autonomous Mobile Robots (AMRs) with the new Omnidirectional Dolly Mover AGILOX ODM. While the AGILOX ONE is equipped with a scissor lift and the AGILOX OCF has a free lift for load handling, the AGILOX ODM is built on the principle of a dolly mover. This means it can accept loads with a maximum weight of 300 kg to a maximum lifting height of 250 mm and transport them to their destination. The intelligent AMR concept with AGILOX X-SWARM technology thus opens up new areas of application and other industry segments because small load carriers (such as totes), which the new AGILOX ODM is designed to transport, are widely used, especially in the electronics and pharmaceutical industries.

Details of the new AGILOX ODM
With the AGILOX ODM, AGILOX has brought new thinking to the concept of Automated Guided Vehicles: The compact vehicle travels autonomously and navigates freely on the production floor or in the warehouse, perfectly ensuring the in-house material flow. Just like AGILOX ONE and AGILOX OCF, AGILOX ODM uses an omnidirectional drive concept. This allows it to travel transversely into rack aisles as well as turn on the spot, enabling it to maneuver even in the tightest of spaces. The lithium iron phosphate (LiFePO4) accumulator ensures short charge times and long operating cycles.

“AGILOX is a brand that has built a strong foundation with the AGILOX ONE and the AGILOX OCF. With the new AGILOX ODM, we remain true to our brand DNA while simultaneously targeting the transport of small load carriers to support our growth plan to become the world’s leading AMR provider,” says Georg Kirchmayr, CEO of AGILOX Services GmbH.

The AGILOX advantage
With the new AGILOX ODM, customers can benefit from all the advantages of same proven X-SWARM technology as in AGILOX ONE and AGILOX OCF: the unique advantages of an (intra-)logistics solution designed from the ground up.

Since AGILOX AMRs have no need for a central control system and can orient to the existing contours with millimeter precision, this eliminates time-consuming and costly modifications to the existing infrastructure. Autonomous route-finding also enables the vehicles to avoid obstacles unaided. If it is not possible to get past the detected obstacle due its size or the available clearance, the AMRs calculate a new route within seconds to reach their destination as quickly as possible. For customers, this means maximum freedom in their existing processes, because they do not have to adapt to the Autonomous Mobile Robot system. Instead, the system adapts to the customer’s processes. Furthermore, fully autonomous routing ensures a safe workflow – even in mixed operations.

Plug & Perform commissioning of the intelligent intralogistics solutions and the absence of a master computer or navigation aids also saves AGILOX customers from doing tedious alteration work in advance. Once the logistics robots have been put into operation, they organize themselves according to the (decentralized) principle of swarm intelligence, i.e. they exchange information several times a second to enable the entire fleet to calculate the most efficient route and prevent potential deadlocks before these can occur. The customer thus benefits from a system that constantly runs smoothly, with no downtime. Time-consuming coordination of vehicles by the customer is also a thing of the past thanks to AGILOX X-SWARM technology. For the customer, this means flexibility, because it lets them expand the vehicles‘ area of operation within just a few minutes. It also means that it is very easy to relocate an AGILOX AMR to be used temporarily in other areas of the company areas or its subsidiaries. Since AGILOX vehicles can also communicate with other machines or the building infrastructure by means of IO boxes, even rolling doors or multiple floors are no problem for the AMRs. So, this too means that customers enjoy maximum flexibility in the organization of their production processes.

Another major advantage comes from mixed operation of the AGILOX fleet in a “swarm”. The smaller AGILOX ONE and ODM series vehicles can then, for example, feed the assembly workstations or e-Kanban racks, while the AGILOX OCF vehicles transport the pallets. This can easily be done because AGILOX AMRs all use the same control and WiFi infrastructure.

http://www.agilox.net

NSK service robot technology supports frontline healthcare

NSK is working to assist society by developing new service robot technology, including robotic devices for moving patients in medical settings. In October 2021, the company joined a Japanese government initiative to implement robotic technology in hospitals and help prevent the spread of Covid-19. NSK is now working to develop its robotic technologies further through dialogue with frontline medical staff.

New robots are currently in development around the world to assist humans and help solve societal issues. As part of this effort, NSK wants to create robots for use in settings where many people are moving around, including medical facilities and hospitals. The company’s smooth movement and low noise technologies are ideal for robotic applications in this field.

Among the candidates for development at the initial planning stage was an autonomous mobile robot. However, after observing the inner workings of a hospital, with its narrow corridors and high footfall rates, NSK concluded that a motorised assistance robot which could help staff during patient transfer would be a more useful contribution to workplace efficiency.

The company knew that its proposed robot could reduce the physical burden on medical staff and help facilitate work-style reform in the healthcare sector. Based on this approach, the company built a robotic prototype that helps staff to move heavy objects such as stretchers and trolleys in hospitals. As part of the Japanese government initiative, NSK is currently demonstrating the use of its motorised assistance robot at a major hospital. The end goal is eventual adoption by the healthcare sector for daily use.

NSK is focusing on essential user issues when developing the assist robot, deploying idea verification in short cycles. For example, rather than spending three years to develop the robot in its entirety, NSK is seeking feedback from customers every three months, implementing improvements incrementally during the development process.

The robot developed by NSK uses a motor drive that facilitates smooth starting and acceleration, as well as deceleration and tight turns. NSK ultimately wants to create a usable robot that fits user requirements, leveraging its know-how to aid people working in frontline healthcare. Innovative projects of this type support the company’s ethos of better meeting the needs of society, while simultaneously creating opportunities for new business growth.

Could Robotic Scuba Divers Reach The Bottom Of The Ocean?

Guest Article by Ellie Poverly - Ellie is an online journalist specializing in robotics and science research. She is also the Managing Editor at Revolutionized Magazine. 

As of 2022, roughly 80% of the ocean remains a mystery. In fact, much of it hasn’t even been seen by humans yet. There have been more photographs of the Moon’s surface than the ocean floor.

Exploring the deepest parts of the ocean is an incredible challenge, complicated by intense pressures and complete darkness. Here’s a look at the robots that could finally reveal the secrets of Earth’s oceans.

The Limits of Human Exploration

Over half of the tallest mountain on Earth is underwater. The volcano Mauna Kea in Hawai’i is estimated to be around a mile taller than Mt. Everest from base to peak, although most of it is submerged. This massive volcano is just one of countless secrets hiding beneath the surface of Earth’s oceans.

Other discoveries waiting underwater range from the wrecks of lost aircraft to the remains of sunken ships and even sunken cities, as well as life that looks like something from an alien world. Exploring the ocean floor could reveal groundbreaking archaeological, geological and biological discoveries. So, why haven’t humans started SCUBA diving down to the seabed?

Unfortunately, reaching the ocean floor is not easy, especially for humans. The deepest part of the ocean is the Mariana Trench, which extends 7 miles — or about 36,200 feet — deep. To put that into perspective, the world record for the deepest SCUBA dive is only 1,090 feet, set by diver Ahmed Gabr in 2014. Approximately 1,000 feet below sea level is considered the maximum depth humans can dive.

Luckily, humans have invented some amazing robots to help explore the ocean floor remotely.

The Robotic SCUBA Divers Exploring the Depths

A growing number of robotic SCUBA divers travel down to the deepest reaches of the ocean. Some look like mini submarines, while others are eerily human-like. These robots help scientists study a wide range of topics and may become even more crucial in the years ahead.

For instance, climate change increases the risk of food toxins on the surface. Could this be happening underwater as well? Additionally, the strange biology of deep-sea life could help researchers learn more about how life evolved on Earth and how it might exist on other worlds.

The Woods Hole Oceanographic Institution has explored depths of 36,000 feet below sea level in the Mariana Trench using a robotic submarine called Orpheus. The robot is helping create 3D imaging of the ocean floor and capture video footage of deep-sea life. Its navigation system may one day be used in robots that explore the dark oceans of the moons of Jupiter and Saturn.

Taking a completely different approach is the OceanOne robotic SCUBA diver developed by researchers at Stanford University. The OceanOne is designed to be as human-like as possible, acting as a robotic avatar for human divers. On its maiden voyage in 2016, OceanOne was used to retrieve the first treasures ever recovered from the flagship of King Louis XIV, wrecked in 1664. Humans have never touched the wreck before.

NASA is also developing a deep-sea robot — the Aquanaut — which features a humanoid design. The Aquanaut has front-mounted cameras and sensors, as well as robotic arms engineers can connect various tools to. Unlike other deep-sea robots, the Aquanaut is geared more toward underwater work than exploration. However, NASA still plans to use robots to explore the oceans of Europa and Enceladus, frozen moons of Jupiter and Saturn, respectively.

What the Robot Divers are Discovering

These robotic SCUBA divers are making incredible discoveries at the bottom of the ocean. For starters, robots are helping scientists map the ocean floor, which is a monumental undertaking. Robots that dive down to the seabed need to withstand immense pressures that would kill a human diver. Plus, all of the robot’s instrumentation, sensors, cameras and navigation electronics must be able to survive, as well.

In addition to mapping the ocean floor, robotic SCUBA divers are helping humans find new species of aquatic life. The seabed seems like an unlikely place for life — it is entirely devoid of sunlight and freezing. However, robotic deep-sea exploration has changed how scientists think about the necessary ingredients for life.

Dozens of new species have been discovered living in the darkness of the deep oceans. They range from colossal squids to strange life forms that look like something straight out of science fiction. Many deep-sea animals do not have eyes since there is no light on the ocean floor. Others have evolved to be far larger than their higher-depth cousins, such as enormous jellyfish and crabs.

The Future of Robotic SCUBA Divers

Robots are taking exploration to new horizons that would otherwise be unattainable for humans. Earth’s oceans remain some of the least explored regions in the solar system. With the help of robotic SCUBA divers, scientists are discovering new species, unearthing ancient shipwrecks and revolutionizing knowledge of the sea.

Quickly available in six different housing variants | IDS adds numerous new USB3 cameras to its product range

Anyone who needs quickly available industrial cameras for image processing projects is not faced with an easy task due to the worldwide chip shortage. IDS Imaging Development Systems GmbH has therefore been pushing the development of alternative USB3 hardware generations with available, advanced semiconductor technology in recent months and has consistently acquired components for this purpose. Series production of new industrial cameras with USB3 interface and Vision Standard compatibility has recently started. In the CP and LE camera series of the uEye+ product line, customers can choose the right model for their applications from a total of six housing variants and numerous CMOS sensors.

The models of the uEye CP family are particularly suitable for space-critical applications thanks to their distinctive, compact magnesium housing with dimensions of only 29 x 29 x 29 millimetres and a weight of around 50 grams. Customers can choose from global and rolling shutter sensors from 0.5 to 20 MP in this product line. Those who prefer a board-level camera instead should take a look at the versatile uEye LE series. These cameras are available with coated plastic housings and C-/CS-mount lens flanges as well as board versions with or without C-/CS-mount or S-mount lens connections. They are therefore particularly suitable for projects in small device construction and integration in embedded vision systems. IDS initially offers the global shutter Sony sensors IMX273 (1.6 MP) and IMX265 (3.2 MP) as well as the rolling shutter sensors IMX290 (2.1 MP) and IMX178 (6.4 MP). Other sensors will follow.

The USB3 cameras are perfectly suited for use with IDS peak thanks to the vision standard transport protocol USB3 Vision®. The Software Development Kit includes programming interfaces in C, C++, C# with .NET and Python as well as tools that simplify the programming and operation of IDS cameras while optimising factors such as compatibility, reproducible behaviour and stable data transmission. Special convenience features reduce application code and provide an intuitive programming experience, enabling quick and easy commissioning of the cameras.

Learn more: https://en.ids-imaging.com/news-article/usb3-cameras-series-production-launched.html

Kivnon brings perfect Pallet Stacking to Logistics & Automation 2022

Kivnon will be presenting its most advanced and safest AGV/AMR Forklift at the event

21 September 2022, Barcelona: Kivnon, an international group specializing in automation and mobile robotics, is attending Logistics & Automation in Spain and will be showcasing it’s safe and versatile K55 AGV/AMR Forklift Pallet Stacker. Putting the emphasis on forklift safety, Kivnon K55 is equipped with advanced safety features to guarantee safe operations as it collaborates, moves, and reacts in a facility.

The Kivnon K55 is designed to move and stack palletized loads at low heights and performs cyclic or conditioned routes while interacting with other AGVs/AMRs, machines, systems, and people, making it a highly effective and safe solution. The model incorporates safety scanners that allow the vehicle to ensure 360-degree safety and operate seamlessly in shared spaces. The fork sensors help assess the possibility of correct loading or unloading of the pallet, keeping the transported goods safe.

Thierry Delmas, Managing Director at Kivnon, says, “AGVs/AMRs are revolutionizing internal logistics. The rising forklift safety challenge is of deep concern, and with the K55 we have taken a step forward to address the global issue. The Kivnon range is designed to ensure safe and reliable operations and to optimize operational efficiency.“

During the event, which runs from 26 – 27 October at IFEMA, Madrid, Kivnon will demonstrate the capabilities of the K55 Pallet Stacker. The vehicle can autonomously transport palletized loads of up 1,000 kg and lift them to heights of up to 1 meter. The vehicle is capable of performing cyclical or conditional circuits and interacting with other AGVs/AMRs, machines, and systems. Highly adaptable, the K55 is perfect for any open-bottom or euro-pallet storage application, receipt and dispatch of goods, and internal material transport. Its use will optimize safety, storage space, and process efficiency.

A robust industrial product, the K55 provides the reliability required to ensure continuity of production process and flexibility to adapt to specific application needs, with an online battery charging system that can function 24/7 with opportunity charges.

Delmas continues, “The Logistics and Automation show is an important networking event where customers can learn about the latest technologies and innovations. We pride ourselves on innovation and are excited to have this opportunity to showcase the capabilities of our products. In addition to the K55, our robust portfolio also includes twister units, car and heavy load tractors, low-height vehicles, and cart pullers, meeting multiple application needs”

The efficiency and precision of Kivnon AGVs/AMRs will be on display and Kivnon robotics experts will be available throughout the show to answer questions and arrange consultations at booth #3F43.

To register for the show, please visit https://www.logisticsautomationmadrid.com/en/

About Kivnon:

Kivnon offers a wide range of autonomous vehicles (AGVs/AMRs) and accessories for transporting goods, using magnetic navigation or mapping technologies that adapt to any environment and industry. The company offers an integrated solution with a wide range of mobile robotics solutions automating different applications within the automotive, food and beverage, logistics and warehousing, manufacturing, and aeronautics industries. 

Kivnon products are characterized by their robustness, safety, precision, and high quality. A user-friendly design philosophy creates a pleasant, simple to install, and intuitive work experience.

Learn more about Kivnon mobile robots (AGVs/AMRs) here

Austin-based Apptronik Inks Partnership with NASA for Humanoid Robots

AUSTIN, TEXAS (PRWEB) SEPTEMBER 20, 2022

Apptronik, an Austin-based company specializing in the development of versatile, mobile robotic systems, is announcing a partnership with NASA to accelerate commercialization of its new humanoid robot. The robot, called Apollo, will be one of the first humanoids available to the commercial markets.

At Apptronik’s headquarters in Austin, Texas, the first prototype of Apollo is now complete, with the expectation of broader commercial availability in 2023. Unlike special-purpose robots that are only capable of a single, repetitive task, Apollo is designed as a general-purpose robot capable of doing a wide range of tasks in dynamic environments. Apollo will benefit workers in industries ranging from logistics, retail, hospitality, aerospace and beyond.

NASA is known across the globe for its contributions to the advancement of robotics technology. NASA first partnered with Apptronik in 2013 during the DARPA Robotics Challenge (DRC), where founders were selected to work on NASA’s Valkyrie Robot. The government agency has now selected Apptronik as a commercial partner to launch a new generation of general-purpose robots, starting with Apollo.

“Continued investment from NASA validates the work we are doing at Apptronik and the inflection point we have reached in robotics. The robots we’ve all dreamed about are now here and ready to get out into the world,” said Jeff Cardenas, CEO and co-founder of Apptronik. “These robots will first become tools for us here on Earth, and will ultimately help us move beyond and explore the stars.”

In addition to its work with NASA, Apptronik’s team has partnered with leading automotive OEMs, major transportation and logistics companies, and government agencies. Boasting notable names including Dr. Nicholas Paine, Co-founder and Chief Technology Officer of Apptronik and Dr. Luis Sentis, Co-Founder and Scientific Advisor, its team is respected as among the best in the world. A growing hub for robotics, the Austin-based company continues to recruit top talent looking to bring their innovations to market now.

Apptronik is recognized for its emphasis on human-centered design, building beautifully designed and user-friendly robotic systems. As part of this commitment, it selected premier design firm argodesign as its partner in designing Apollo with the goal of creating robots capable of working alongside humans in our most critical industries. The team’s focus now is to scale Apollo so that it can be customer-ready in 2023.

About Apptronik:
Apptronik is a robotics company that has built a platform to deliver a variety of general-purpose robots. The company was founded in 2016 out of the Human Centered Robotics Lab at the University of Texas at Austin, with a mission to leverage innovative technology for the betterment of society. Its goal is to introduce the next generation of robots that will change the way people live and work, while tackling some of our world’s largest challenges. To learn more about careers at Apptronik, visit https://apptronik.com/careers/.

RoboHeart is Spanning New Realms of Technology

If you are an experienced Maker, or even just a passing Tinkerer, the RoboHeartTM Hercules development board may be just what you are looking for.

RoboHeart is an exceptional development board that proudly boasts: “One board to rule them all!” This exceptional circuit board is just what is sounds like: the heart of your robotics Maker project.

At Augmented Robotics, we have gone the extra mile by combining the magic of Augmented Reality with embedded mobile systems, so you can play and manipulate brave new worlds using only your smartphone. This allows you to control any RC device or creative Maker project with connectivity in WiFi, BLE and even 5G when paired with out RoboHeart Vela board. On Tuesday, August 23, 2022, RoboHeart was launched on Kickstarter, and it reached its funding goal in less than three hours! In only two short days, RoboHeart was selected as the coveted “Project We Love” by Kickstarter – an award given to projects that really stand out with creative innovation.

By replacing the circuit board inside your RC car with RoboHeart, you can drive the car with only your smartphone – so we have decided to add an original AR game on top of that. Drive around and collect candies to get the most points… but careful not to run out of fuel! As we reach more stretch goals, the game will get increasingly complex. We have already reached our first stretch goal – Gamepad compatibility – but there are many more to come.

The Maker community is the most creative community out there, so RC cars are definitely not the only thing your RoboHeart board can be used for. Put the board into any electronics project and watch it come to life!

Get RoboHeart and dive right into building projects with an open-source RoboHeart Arduino library on GitHub! Our repository has several cool examples at varied complexities, from reading the IMU sensor data to controlling things with your smartphone. For example, we have built our own Balancing Bot using only one board:

The RoboHeart Hercules has all the features one needs to start building:

  • ESP32-WROOM32 with dual-core and WiFi+Bluetooth capabilities
  • Arduino compatibility for easy programming
  • An integrated Inertial Measurement Unit (IMU) for motion data
  • Three DC motor outputs
  • USB-C connector with auto-download feature: flashing is a piece of cake!
  • LiPo battery input with auto-charging feature: where do you need Power most, at USB or LiPo? RoboHeart will automatically distribute power where it is most needed
  • Convenient peripherals for Makers: GROVE, JST and JTAG

… and with the addition of the RoboHeart Vela extension board, Makers can unlock the power of 5G, and no longer be dependent on the BLE range of 50m.

So the only question that remains is: What will YOU do with RoboHeart?

https://www.kickstarter.com/projects/augmented-robotics/robohearttm-by-augmented-robotics