BumbleBeeBot is now BombiniBot

I just received this message from the OpenElectrons Team:

We had to change the name of the BumbleBeeBot … the new name is BombiniBot.

We are changing the texts on the project page to that effect, but in some places it just can not be changed.

This change could be confusing for a while, but be aware, the new name is „BombiniBot“.

 

 

BumbleBeeBot – for Teaching Robotics and Programming to Kids

OpenElectrons have started a Kickstarter Campaign for an Arduino based robot called BumbleBeeBot to teach programming and robotics to young kids.
OpenElectrons is the affiliate of mindsensors.com, which makes sensors and controllers for LEGO Mindstorms.

BumbleBeeBot is a low cost kit with progressively complex programming environments.
For the younger audience, the bot uses Scratch like graphical programming environment.
Scratch is already widely adopted in schools and makes programming easy for children.
Growing students can then transition to miniBloq which is graphical programming interfacing to Arduino.
At advance level, students can directly program in Arduino IDE using C/C++.

The BumbleBeeBot has gone through pilot programs in schools and afterschool robotics classes in
Richmond, Virginia, and now they’re seeking funding for production.

#BumblebeeBot for Teaching #Robotics and #Programming to Kids:
https://www.kickstarter.com/projects/1842571016/bumblebeebot-for-teaching-robotics-and-programming

Game-Changer: First 3D Printed, Educational Robot Launches on Kickstarter

Seattle, WA – SociallyShaped, an educational robotics company, is pleased to announce the first, advanced, 3D printed, customizable robot that teaches electronics, programming, and 3D design. Named Roby, this amazingly versatile robot has a full on-board computer and programming software designed to teach children the basics of programming. The first robot of it’s kind, Roby provides the platform needed to excel in many areas of technology.

The mission of SociallyShaped is to improve access to technical skills, and empower anyone to become innovators in the technology industry. You can become part of SociallyShaped’s community and mission by visiting https://www.kickstarter.com/projects/758562141/3d-printed-educational-robotic-platform

SociallyShaped is an educational robotics company, which encourages learning and entrepreneurialism for children and adults alike. SociallyShaped was founded by John Villwock, MBA (Cornell), Mikhail Stolpner, MBA (Cornell), and Aubra Taylor, MA in Seattle, WA. Combined, they have extensive experience in child development, technical innovation, programming, business management, 3D printing, and electrical engineering.

MyoWare™ | Harness the power of your muscle signals!


Raleigh, NC, May 13, 2015 – The bionics wizards at Advancer Technologies just released their fourth generation muscle sensor, the MyoWare. This new Arduino-compatible and wearable sensor harnesses the power of your muscles to control robots, video games, prosthesis, and much more. To show off the power of the MyoWare, these mad scientists have built two amazing projects, the Bionic Iron Man Glove and the 3D Printed Wolverine Claws, and are publishing the steps to build them for free online. https://www.kickstarter.com/projects/312488939/myowaretm-harness-the-power-of-your-muscle-signals

Rokit Smart: Build and Program Robots the Easy Way

On May 14, 2015, Robolink, Inc is launching a campaign on Kickstarter for Rokit
Smart, an innovative and affordable robot kit that teaches kids how to program and
build robots in as little as one hour. With Rokit Smart, kids as young as 8 years old
can program these robots to autonomously follow a track, be controlled by remote
and many other exciting tasks. Rokit Smart includes instructions to build twelve
different robots, but the only limit to what kids can build with this kit is their
imagination. Until now, there has never been a robotics kit with so many potential
options for such a low price point. Rokit Smart will bring the excitement of robotics
to kids who never before considered the idea that they could build and program
their own robot.

Thousands of elementary school students across Southern California have tested
prototypes for Rokit Smart and they have all been amazed at how easy it is to build
and program their own robot. “When I see how much fun kids are having as the
robot they just built dribbles a ball or navigates a maze, it always brings a huge
smile to my face,” says Hansol Hong, Robolink’s CEO. Discovering how the
motors, sensors, linkages and software of a robot interact with each other has
proven to be a fantastic way of introducing young students to science, technology,
engineering and mathematics, also known as STEM education.

After building and programming the out-of-the-box robots, kids will be able to apply
what they learned and make their own robot. Rokit Smart is compatible with
Arduino, a programming language designed for robots that they can download for
free. “Learning to program our robots is a perfect stepping stone into languages like
C and C++. That’s going to be an incredibly valuable skill as these kids get older,”
says Hong.

The Kickstarter campaign for Rokit Smart has a goal of $50,000 by June 16th. The
money will pay for the manufacturing of the first run of Rokit Smarts. The first 100
backers will have the opportunity to secure a Rokit Smart for $99, a savings of 32%
off of the retail price.

For more information, visit the Kickstarter page here.

The Robolink community has already posted some very helpful resources for robot
builders at robolink.com/community.

Meet Tinker: Friendly Robot Teaches Kids to Code

Los Angeles, CA – May 4, 2015:​Introducing “Tinker” the
programmable toy robot that teaches kids how the basics
of computer code through its insertable command playing
cards. Ex-Mattel engineer, Kay Yang, developed the
adorably-designed robot as an alternative for kids to
code devices without having to learn a specific software
language.

 

Build. ​Kids start by assembling Tinker from head to toe
with the basic pack of arms and LEDs. Beginners plug the
arms into the toy’s sides and the LEDs into the ear
sockets. Programmers will also be able to attach
motorized tracks to the bottom of Tinker to allow the
device to move freely. Future accessories include a
microphone, tilt sensor, and bluetooth capability.

Program. ​To program Tinker, kids simply insert a one of
the brightly colored cards that corresponds with the
action they want Tinker to take. Then insert the “if” card
to activate the sensor. Finally, they insert the key card to
activate play mode. Tinker is also Arduino-based and
open source, allowing beginners to graduate and move
into more complex coding using Scratch.

Graduate. ​While programming typically requires a computer application, Tinker is the first toy to teach coding without software. This rudimentary system breaks down the steps so that children can understand the basics of coding by illustrating how a sequence of actions activated affects the play experience. Once users graduate from the cards, they program the toy through the USB plug hidden behind Tinker’s tummy.

 

Tinker the Robot will be available exclusively on Kickstarter from May 4 – June 4,
2015, with the first shipment delivered to customers by Late 2015/Early 2016.

 

 

MakerBloks Launches Four New Games, Including iOS App

MONTREAL, May 12, 2015 /PRNewswire/ — Today, MakerBloks introduces four new games, including a new iOS tablet app, to empower the next generation of makers and inspire STEM education. With MakerBloks, more than 40 million children across North America can now create, build and design real electronic circuits, without any prior technical knowledge.

MakerBloks Logo / MakerBloks Launches Four New Games, Including iOS App (PRNewsFoto/MakerBloks)

MakerBloks are reactive color-coded, magnetic blocks that guide children through the basics of electronic circuits in a simple, fun and immersive way. To keep kids engaged, MakerBloks is introducing four games to pre-order on Kickstarter, including:

  • Light and Sound Intro Kit – featuring the basics to building circuits
  • Music Kit – featuring keyboard, microphone and flute games
  • Spy Kit – featuring voice changing and burglar alarm games
  • MakerBloks World – an interactive tablet game that combines the virtual and physical worlds

MakerBloks World is a state-of-the-art tablet game that combines the virtual and physical worlds. The tablet’s front camera uses unique MakerBloks visual recognition software to read and react when a child assembles the blocks correctly, all in real-time. With MakerBloks World, the child advances through an educational game that uses puzzles, rocket launchers, and imaginative settings such as candy land, water world and outer space, creating a truly immersive way to teach kids how to build and use electronic circuits.

„With over 15 years specializing in designing children’s games and toys, I understand how games should look, function and feel,“ saidFrancois Poirier, CEO and founder of MakerBloks. „I also know how important longevity is. Parents want their kids to use games and toys for as long as possible. The best part about MakerBloks is its ‚hack-ability‘ – the instructions are just the beginning. Teaching kids about science and technology is a great start, but helping them to be more resourceful, more creative and to feel empowered is what MakerBloks is really about.“

Founded in 2014, MakerBloks was inspired while Francois was shopping for a game or toy for a six year old that was fun, easy-to-use and educational. Since everything was either too complex or had no educational component, MakerBloks is designed for children starting at six years old. Each kit features:

  • Colorful blocks that magnetically connect together on all four sides
  • A guide that explains what each block’s electronic symbol means
  • A set of instructions that is optional! Follow the instructions or troubleshoot your way to success!
  • A hacking hint: every game can be assembled multiple ways – the possibilities are only limited by your imagination

MakerBloks is available for pre-order today on Kickstarter, with intro kits starting at $45 and advanced kits, including intro kit and additional blocks, begin at $85. The MakerBloks iOS tablet app will be available for download once the kits begin to ship in Fall 2015.

For more information about MakerBloks, please visit http://makerbloks.com/en

About MakerBloks

Francois Poirier founded MakerBloks in 2014 after he realized that there are no simple ways to teach young children about electronics. Pairing beautiful design with functionality and fun, MakerBloks gives parents the tools to set their child up for successful learning in science, technology, engineering and math. Easily identified and connecting flawlessly every time, MakerBloks start with a battery, but are powered by imagination.

Create, Share, & Teach with SnapCAD

Information about SnapCAD just appeared on the VEX Robotics website. You can now sign up with your email to get informed as soon as SnapCAD is available for download.

So, sign up and while you wait for the download to become available, read the information that is on their official website:

Create, Share, & Teach with One Easy-to-Use Program

SnapCAD is a community-built solution for designing virtual VEX IQ models and creating printable, shareable instructions for them. Use SnapCAD to test out a novel idea in the virtual world before building it physically, or to share your creations with the world in the form of step-by-step build instructions!

Transform your VEX IQ Classroom

SnapCAD is a FREE download and available to anyone with a PC running Windows 95 or newer (see below for full system requirements). Students can even install it on their home computers and bring their models (saved in the lightweight .ldr or .mpd file formats) into class the next day.

A Community Effort

The SnapCAD vision began when some members of the VEX IQ community began converting VEX IQ CAD files into the popular open-source LDraw format. This made them available for use in a number of publicly available LDraw editors.

Built for VEX IQ

Drawing from community expertise, SnapCAD is a new LDraw editor designed specifically for VEX IQ. Students can use SnapCAD to learn the fundamentals of computer aided design (CAD) and create new VEX IQ robots!

  • Comes pre-loaded with the entire VEX IQ part library
  • Supports colored VEX IQ parts
  • Includes pre-built models of the Autopilot, the Clawbot IQ, and V-Rex
  • Adapts to new products ported into SnapCAD soon after public release
  • Creates step-by-step instructions for your custom builds

And feel free to join our VEX IQ discussions in our VEX IQ Robotics Fangroup on Facebook

VEX IQ SnapCAD Screenshot

 

RoboCup German Open 2015 Magedburg Live Streams #2

Here you find the LiveStream provided by the TU Eindhoven for the RoboCup @Home League:

 

This year, the HTWK Leipzig StreamTeam (http://streamteam.fbm.htwk-leipzig.de) will stream all SPL matches in this year’s Robocup German Open Competition: http://streamteam.fbm.htwk-leipzig.de/live

The finals in the RoboCup@Work league will start at 14:00 and will be live streamed:
http://bambuser.com/channel/LUHbots

Husarion Launches Kickstarter Campaign for Build-Your-Own Robot Device

Husarion’s RoboCORE Offers Easy and Affordable Way for Anyone to Construct a DIY Robot

Krakow, Poland – February 11, 2015 – Husarion, a Poland-based technology start-up, today announced it is seeking funding for RoboCORE, a device that acts as the “heart” of the DIY robot. Husarion’s mission is to bring robotics into the mainstream consumer market and RoboCORE offers the ultimate solution that allow robotics enthusiasts and companies to easily build their own robots, without the need for high-level programming or engineering skills.

Husarion founders are looking to raise $50,000 to bring RoboCORE to market. Over the next 30 days, investors may support and track Husarion’s campaign at the official project page on Kickstarter. 

The market for consumer and office robots is surging. A recent report from Business Insider Intelligence found that the multibillion-dollar global market for robotics, long dominated by industrial and logistics uses, has begun to see a shift toward new applications. According to BI, There will be a $1.5 billion market for consumer and business robots by 2019. BI also projects the market for consumer and office robots will grow at a CAGR of 17 percent between 2014 and 2019, seven times faster than the market for manufacturing robots.

“The design and production of robot components is so costly that robots are currently used mainly for military and industrial purposes,” said Dominik Nowak, CEO at Husarion. “There’s been little or no opportunity for robotics to become widespread. Our mission is to make out-of-the-box modules available so that anyone can create an inexpensive robot with advanced capabilities.”

RoboCORE is a combination of software and hardware, packaged in a sleek, heart-shaped device. Unlike other robotics systems, RoboCORE allows users to control or code from anywhere in the world, as well as stream both audio and video. RoboCORE’s rich peripherals, high-performance CPU and intuitive software enable robot makers to create without limits.

Building simple telepresence robots with a RoboCORE module is easy. Consumers can simply use old smartphones and tablets to control the robot by connecting them to an app, and then connect the construction with a cloud app, using a Wi-Fi or mobile (3G, LTE) network. The cloud-based RoboCORE app is a hub for managing all robots. Users can log in through a web browser, program and control the robot, and even share their project with friends.

RoboCORE will be useful for a variety of business settings and in solving real human problems. The module is also ideal for students and hobbyists, who will now be able to create and design complicated constructions that were previously impossible to build inexpensively, or without advanced programming skills. In addition, RoboCORE is compatible with any mechanics system, including pieces from popular LEGO® MINDSTORMS® sets.

The small (115×125 mm for the basic version, 82×82 mm for mini) device conceals a number of components with high scaling capabilities. Internal components include the Cortex-M4 core microcontroller, Intel Edison miniature computer with Wi-Fi and Bluetooth 4.0 connectivity, DC engine ports with encoders, sensor ports, extension modules (for instance, for servomechanisms), a slot for microSD cards, and a microUSB socket. On Kickstarter, Husarion is also presenting the RoboCORE-mini, an even smaller module with basic features for beginners, as well as extensions.

 “We believe that today’s consumer robotics is at the same development stage as the computer industry in the late 1970’s. Not many people then appreciated young electronics enthusiasts. Now, it’s similar with robot makers,” says Radoslaw Jarema, CTO of Husarion. “We’ve created RoboCORE because we know that the world is on the eve of another technological revolution. The age of the personal computer has been here for a while—and now it’s time for personal robots. We hope that the Kickstarter community will receive our project well and support it.”