3D Printed Robot Arm for STEM Created by Idaho Startup

Boise, ID – Slant Robotics has launched a Kickstarter campaign for a 3D printed robot arm, LittleArm. LittleArm is low cost kit for teaching engineering and robotics to students in STEM courses.

 

The LittleArm began as a weekend project for Slant Robotics founder, Gabe Bentz. “I didn’t want to pay the 100-plus dollars for an existing arm kit,” said Bentz, “So, I did a little design and let my 3D printer do the work.”

Bentz eventually showed his creation to colleagues and friends in the area. Many asked him to make them one. But when several STEM teachers expressed interest in the arm for their classrooms Bentz decided to turn the kit into a product, at Slant Robotics.

Thanks to rapid prototyping techniques the LittleArm was ready for production within just a few weeks. It utilizes high strength metal-geared microservos, and is controlled with a standard Arduino Uno allowing it be programmed using graphical software such as Blockly. When connected to a computer, Slant has created a simple graphical app which allows the arm to be trained to execute a set of motions.

The entire project is open-source, allowing anyone to download the 3D designs and software and build their own LittleArm.

At the time of this release, the LittleArm Kickstarter campaign has passed the halfway point, after being live for just 2 days. Over the next few months the team at Slant Robotics will be developing software and producing teaching materials so that students and teachers can easily use the LittleArm when it arrives.

About Slant Robotics

Slant Robotics is a startup located in Boise, ID. Its mission to to develop consumer robots for the home, school and business. The LittleArm is the fourth product that Slant has released.

BuWizz – The one brick to steer them all

BuWizz is a high performance LEGO® compatible remote control system and battery, seeking to raise $50,000 on Kickstarter. Why we made BuWizz? The original LEGO® Power Functions control system allows lesser speed, power and agility than users would like to have for their models. Created as an enhancement to the existing LEGO® remote control system, BuWizz is better than anything available on the market until now. Paired over Bluetooth with an iOS or Android device, BuWizz brick is made to control the motors and lights of LEGO® Trains and LEGO Technic models. Besides motors to power movement, BuWizz users will be able to add light effects and other special functions to their models.

While one BuWizz brick can control up to four motors or lights, several bricks can be controlled in parallel, from either one or more smart devices. Users can control a huge model with 8, 12 or even more motors and lights. It’s perfect for having fun, like racing against each other using several cars. One BuWizz brick inside the model replaces 3 LEGO components: a battery box and two infrared receivers, while only occupying the space of two receivers.

Connected inside a LEGO model or train, BuWizz brick offers precise control and provides eight times more power than existing solutions. It operates in three speed modes, pushing any LEGO model to it’s limits in “Fast” mode. Until now, LEGO models were mostly limited to indoor use. With BuWizz they come alive, zoom around two times faster and are ready to defeat the most difficult outdoor terrains.

In a later announced stretch goal, BuWizz team will offer “Ludicrous” mode, the next generation of speed and power levels, which will dwarf even the currently highest-performance “Fast” mode.

Users will be able to write their own Apps to control BuWizz and integrate BuWizz into platforms of their choice, the communication protocol will be open.

The reason for success is design and clever engineering solutions, which made BuWizz powerful and simple to use. Several benefits of BuWizz are due to the embedded Li-ion battery, which provides power for hours of fun. BuWizz can be recharged with any Micro-USB charger. The App will alert users when power is running low. For extended play time, BuWizz can also be charged on the go, with a standard Powerbank charger.

The price of single brick will be $119. And shipping will begin in November.

WEBSITE – www.buwizz.com

http://www.buwizz.com/

THE KICKSTARTER CAMPAIGN  –

https://www.kickstarter.com/projects/973645257/789115000?token=eafeb608

SubPos Ranger: Indoor Positioning System

The SubPos Ranger is as an open source indoor positioning system to be used for robotics applications in the education and hobbyist markets. It has primarily been designed as a flexible radio frequency platform for experimenting and tinkering, that allows you to not only obtain positioning and perform distance measurements, it can also be used for passive motion detection as well as communication between embedded devices.

While there are many positioning systems on the market, the Ranger has been created to be extremely cost effective, easy to use and develop for. While other systems are usually locked down in one way or another, whether that be functionality or availability of source code, the Ranger is completely open and flexible. Perfect for the budding hobbyist to invent the next big thing.

The Ranger is fully operational and ready for manufacture, and a complete system can be had for $274AUD (~$210USD), which gives you 3D positioning in a room, as well as a receiver to output the position. Once set up, the system can give up to +-10cm of accuracy. Other options are also available to experiment with too, such as a cheaper option for two nodes to perform distance measurements and motion detection, or a Wi-Fi support add-on.

Key Features:
•        Supports 2D and 3D Positioning – not just x and y, but z also.
•        2.4GHz ISM Spectrum – supported worldwide.
•        Standards Compliant Hardware – supports 802.15.4 and can also utilise Zigbee or 6LoWPAN communication protocols.
•        Reconfigurable RF Chipset – enables many different 2.4GHz ISM applications.
•        Firmware Updates over USB – no need for any extra programming hardware.
•        Open Source Hardware and Software – hack, repurpose and play to your heart’s content.
•        Modular Design – the Ranger allow all sorts of connectivity options. You can connect it to anything such as a Raspberry Pi via USB or GPIO, Arduino or to your smartphone via Wi-Fi.
•        Low Level Raw Data and Parameters – access to all low level measurement data and parameter tweaks are available to discover interesting new applications (such as motion detection).
•        Node Position Calibration – get the position of nodes automatically; no manual fixed node measurements required.
•        9-Axis Accelerometer – the client expansion board contains a 9 axis accelerometer for increased positioning accuracy.

Board Image – https://cdn.hackaday.io/images/7007401465041329447.jpg
Client Image – https://cdn.hackaday.io/images/3158211465041337828.jpg

Enhance Your Makerspace!

It’s no secret how exciting the trend of makerspaces are for schools. While this movement was started quite some time ago, it seems to have gained particularly great momentum in the past 5 years.

Built on the idea of ‘constructionism’, makerspaces are a very obviously translated idea, where a space is dedicated within a school or educational facility for students to create and ‘make’ things.  There is shared resources and networking that takes place and provides a different structure of learning for students. Ranging from woodworks to robotics, these spaces are extremely important in fostering creativity and problem solving in students.

Where Will Makerspaces Work Best?

Makerspaces also range from elementary schools to college campuses, so their versatility is extremely useful.

According to Educause.edu, on their article 7 Things you Should Know About Makerspaces,

“….certain materials and tools are emblematic of makerspaces, such as microcontrollers called arduinos and 3D printers, valuable for fast prototyping. As the notion of providing space for project design and construction has caught on in education, such places have acquired other accoutrements, from paints and easels and impromptu stage sets to cooktops and candy molds. Used by students, faculty, and staff, makerspaces have become arenas for informal, project-driven, self-directed learn- ing, providing workspace to tinker, try out solutions, and hear input from colleagues with similar interests. “

It’s places like these that encourage a different type of learning to take place, perhaps a more ‘open-range’ type of environment that differs from the structure of a classroom being led by a teacher.

Some supplies for a makerspace are less available than others, such as 3D printers and robots.

If you compare sharing a robot amongst a class of 20 students to them all sharing a computer to learn from; you can see how the essence of learning is diluted. The experience is completely different and likely not nearly as effective or beneficial to the students until it’s their “turn” to use the computer.

The same can be said for robotics. We know they are extremely useful for teaching many STEM concepts and early mechanical engineering, and LEGO robots are very popular for schools and competitions but start around $400. For most public schools, one robot may be more than is affordable so to effectively teach an entire class by sharing; the students are not receiving the best quality experience from their class.

Here is another example where the Virtual Robotics Toolkit can provide a solution to hundreds of schools and thousands of students, where each student is able to individually use the simulator. They can build and control their own robots using the exact same controller and concepts as the physical robots. In fact, if they’ve already learned how to use a LEGO EV3 MINDSTORMS or NXT robot, they will seamlessly navigate the VRT.

Pilots use flight simulators to learn to fly for the same reason students can learn robotics with one; costs and training purposes.

If students are given access to the VRT in addition to the makerspace of sharing a physical robot, their skills and overall experience will be greatly enhanced and at a fraction of the cost of a real robot.

It’s a win-win for teachers as well, since they’re able to help their class all get to the same level.

Where can this movement take students and educators?

The Educause article says, “One key demand of a makerspace is that it exist as a physical location where participants have room and opportunity for hands-on work, but as these environments evolve, we may see more virtual participation.”

This is such a great point, because of global networking the opportunities are truly endless. Again, here is a great window of opportunity for the VRT to be a part of your school’s makerspace.  The software already encourages users to interact and even compete with other robot enthusiasts across the globe via the internet.

This capability allows students to learn from eachother and share ideas and challenges that they would otherwise not have had the access to.

Leipzig: Best Place for Robots and Friends

It was a festival for the mind and the heart: The 20th RoboCup combined scientific peak performances with the outstanding enthusiasm of participants from all over the world. The world championships of intelligent robots inspired 35,000 participants and visitors on the Leipzig exhibition grounds. In 17 disciplines, the robots and their creative developers demonstrated what robotics is already capable of today. The competitions were accompanied by an exciting exhibition, a scientific technical program and numerous participation offerings.

“We can look back to a very successful RoboCup,” says Professor Gerhard Kraetzschmar, General Chair of RoboCup 2016. “The competitions have demonstrated once more the enormous growth taking place in the robotics sector. And Leipzig and Leipziger Messe proved themselves to be the perfect venue for RoboCup 2016.” Markus Geisenberger, Managing Director of Leipziger Messe, adds: “This was a wonderful RoboCup 2016. Participants from all over the world enjoyed their stay in the trade fair city of Leipzig. And there was something else: RoboCup has shown us that working together on an idea gives rise to a celebration among friends. I would like to thank all supporters who contributed to this successful event.”

These are the winners of RoboCup 2016

A total of 3,500 participants from more than 45 countries and regions came to RoboCup 2016. With them came more than 1,200 robots that competed in the disciplines Soccer, Home, Rescue and Industrial, and in the Junior leagues. The participants and their autonomous robots were fired up from the first to the last minute, and cheered each other on. The following teams won their respective competitions:

RoboCup Major: Soccer

  • Standard Platform League: B-Human, Universität Bremen, Bremen
  • Small Size League: MRL, Islamic Azad University of Qazvin, Qazvin
  • Middle Size League: Final: Tech United Eindhoven, Eindhoven University of Technology, Eindhoven
  • Humonoid Kid Size: Rhoban Football Club, University of Bordeaux 1, Talence
  • Humanoid Teen Size: NimbRo TeenSize, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn
  • Humanoid Adult Size: Baset Adult-Size, Baset Pazhuh Tehran Co., Tehran
  • Simulation 2D: Gliders2016, University of Sydney, Sydney
  • Simulation 3D: UT Austin Villa, University of Texas at Austin, Austin

RoboCup Major: Rescue

  • Rescue Robot League: iRAP ROBOT, King Mongkut’s University of Technology North Bangkok, Bangkok
  • Rescue Simulation Agent: MRL, Islamic Azad University of Qazvin, Qazvin
  • Rescue Simulation Virtual Robot: Yıldız, Yıldız Teknik Üniversitesi, Istanbul

RoboCup Major: Home

  • [email protected]: ToBI, Universität Bielefeld, Bielefeld

RoboCup Major: Industrial

  • [email protected]: LUHBots, Leibniz Universität Hannover, Hanover
  • RoboCup Logistics: Carologistics, FH Aachen, Aachen

Leagues continue to progress: Outdoor-Challenge, RoboCup Industrial, Referee Software

RoboCup is supported by a global community of tens of thousands of members. Their vision: In 2050, a team of autonomous robots wants to play against and beat the reigning FIFA World Champion. Even if this goal still seems visionary at present, the various leagues again registered numerous successes this year, confirming the steady progress of this technology.

Several leagues took up the challenge of having competitions held under outdoor conditions. In the Soccer Standard Platform, a separate competition was successfully held on artificial turf under wildly fluctuating natural lighting conditions. Similarly, Middle Size Soccer also successfully implemented a Technical Challenge under these difficult conditions. Two other innovations created a lot of excitement due to accordingly increased realism. Difficulties and progress in the Soccer category: The Humanoid League used artificial turf and real soccer balls. Three types of automated referee software were used in Small Size Soccer for the first time. They successfully refereed soccer games involving 22 players.

A competition under outdoor conditions was also implemented in the Rescue Robot League. Robots had to localize and remove victims in danger zones, and transport material to these zones. It was also the first time that flying robots took part in another technical evaluation as part of this league. In addition, humanoid robots mastered new tasks such as opening doors, closing valves and using tools.

Another exciting innovation was demonstrated in the [email protected] and RoboCup Logistics Leagues. These were combined under RoboCup Industrial for the first time; a joint competition with mobile robots highlighted key developments for Industry 4.0.

Toyota and SoftBank Robotics will provide robots for future [email protected] Standard Platform Leagues

Hundreds of trade visitors followed the company presentations of the [email protected] Call on Friday. Two new Standard Platforms will be introduced in this discipline for RoboCup 2017. While the current competition allows for the free selection of hardware and software, specific robots will be specified for these leagues in the future. Six well-known technology companies presented their robots, which are well suited for this purpose, and their advantages. “All of the company presentations were impressive, leaving the RoboCup Federation with a difficult decision,” says Prof. Oskar von Stryk, Associated Chair of RoboCup 2016. “We are pleased to announce that Toyota and SoftBank Robotics have been selected by the RoboCup Federation for providing the robots for the [email protected] Standard Platform Leagues starting next year.”

Team Delft wins Amazon Picking Challenge in both categories

This is the first time that the Amazon Picking Challenge was held concurrently with RoboCup. Sixteen teams from around the world took up the challenge of picking up and securely stowing twelve very different items from a shelf within a very short time period. The Delft team from the Netherlands put in an impressive performance on Friday and Saturday, and won both Stow and Pick categories.

Comprehensive scientific and technical program

Several high level scientific events closely co-located with RoboCup also invited visitors to exchange scientific ideas. Lively discussions on the current state of research took place at more than ten concurrent scientific and technical events, including the DGR Days, the 9th IFAC Symposium and the Flower Robotics Seminar. Tomorrow’s RoboCup Symposium closes the world championships of intelligent robots.

RoboCamp delivers a new generation of young scientists

The children and youths participating in RoboCamp fidgeted in their seats during the opening ceremony. The young scientists were very excited about the upcoming workshop, and could hardly wait for the starting signal. For three days, 160 children and youth and their parents worked on their first own robots as part of RoboCamp; the robots then faced off against each other in the first competitions. “The great amount of work done at RoboCamp demonstrates the fascination of children and youth with MINT issues,” says Markus Geisenberger. “I am very pleased that we were able to organize this workshop together with IHK zu Leipzig. I am sure that we have laid the foundation for one or more engineering careers.”

From robot friends and household assistants: Exhibition with an eye to the future

Hello. I can see you! – With these friendly words, robot Pepper from SoftBank Robotics caused quite a bit of excitement among many visitors. At this stand and at 60 more, market leaders such as Siemens, KUKA, Festo, Schenker, Tuxedo and noDNA presented fascinating exhibits. “This exhibition is the ideal complement for the competitions,” says Professor Gerhard Kraetzschmar. “It continues the game-based setting of the competitions with the application side, and turns the future vision of robotics into something tangible.” The future was also at the heart of the Recruiting exhibition. On 1 and 2 July, this event brought together potential employees and employers in the robotics industry at the Congress Center Leipzig.

RoboCup 2017 in Japan

The 21th RoboCup will be held in Nagoya, Japan, from 25 to 31 July 2017.

About RoboCup

RoboCup is the leading and most diverse competition for intelligent robots, and one of the world’s most important technology events in research and training. The World Cup of robots combines a variety of interdisciplinary problems from robotics, artificial intelligence, informatics, as well as electrical and mechanical engineering, among others. As the central discipline, robots play soccer in different leagues. Additional visionary application disciplines, such as intelligent robots as assistants for rescue missions, in households and in industrial production have been added during the last few years. The vision of the RoboCup Federation: That autonomous humanoid robots beat the reigning soccer world champion in 2050. In addition to the Global Sponsors of the RoboCup (Festo, Flower Robotics, MathWorks, SoftBank Robotics), the 2016 world championships are also supported by Siemens (Gold Sponsor), Amazon Robotics, Festo, KUKA (Silver Sponsors), Schenker, TUXEDO Computers (Hardware Partners), HARTING, Arbeitgeberverband Gesamtmetall / think ING, S&P Sahlmann (Bronze Sponsors), DHL (Logistics Partner) and Autoverwertung Freund, arvato, Donaubauer, Flughafen Leipzig/Halle, GiSA, Metropolregion Mitteldeutschland, Micro-Epsilon and regiocom (Friends).

Pioneer of Collaborative Robots Launches Universal Robots+

Odense, Denmark/Munich, Germany, June 21, 2016:Universal Robots, the Danish pioneer of human-robot collaboration, revolutionizes the automation industry with the launch of Universal Robots+ at AUTOMATICA in Munich. Today, the company presents:

  • Universal Robots+: A showroom of Plug & Play application solutions offering a new level of simplicity for companies that want to hit the ground running when installing their next UR robot application;  By choosing accessories, end-effectors, and software solutions from Universal Robots+, both distributors and end users get high security and predictability that applications will run well from the start, saving weeks and months in the integration process from concept to operation of the UR cobots.
  • +YOU: a unique, free-of-charge developer program, offering a powerful marketing and support platform for the flourishing eco-system of UR-robot application developers.

At the AUTOMATICA kick-off in Munich, Universal Robots+ will – for the first time – be presented in hall B5 (518) as well as to all interested developers at a designated +YOU booth (341).

With Universal Robots+, the company creates its own eco-system enabling applications revolving around the collaborative robot arms UR3, UR5 and UR10 to be developed and showcased. The so-called URCaps, accessory components that extend the UR robots’ capabilities, can be customized hardware components, software plug-ins, or a combination of both. The aim of Universal Robots+ is to reduce implementation periods, increase user comfort and reduce costs for all parties involved.

“With Universal Robots+, we create an unmatched win-win-win situation benefitting the developer community, our distribution partners and our end customers,” explains Esben H. Østergaard, CTO and co-founder of Universal Robots. “The participants in the developer program +YOU will receive free support from Universal Robots when developing URCaps. By integrating the accessory components showcased at the Universal Robots+ showroom, our distribution partners and end users reduce spending on application development and testing when they deploy the URCaps as simple Plug & Play solutions. In short, Universal Robots+ is easy access to efficient, well-proven, and safe automation solutions that we elevate to the next level by collaborating with a crucial component: the developers of today and tomorrow.”

How developers and distributors will benefit

“When developers have received our approval for designing within Universal Robots+, we will support them via our local subsidiaries by providing robots for testing and optimizing URCaps. On request, robots can also be purchased at a reduced price, given that they will be used exclusively for the development and testing of new UR-related components,” says Stefan Tøndering Stubgaard, Manager of Universal Robots’ Corporate Technical Support.

After completion of a URCaps prototype, the developer will send it to Universal Robots for examination. Tøndering Stubgaard explains: “Before a new product can be presented in our showroom, we verify its quality. In comprehensive functionality tests, we test whether the URCap can be implemented and operated easily and if the product conforms to Universal Robots’ quality requirements.”

In addition, developers can also get their URCaps certified by Universal Robots. In order to receive this additional quality certificate, developers must document that their solution is already operating in a real application and used successfully by a customer.

Having capabilities featured in the Universal Robots+ showroom is free of charge for developers. In providing this, Universal Robots offers all developers a professional marketing platform granting them access to an ever expanding, global customer network. Sales of all products and capabilities revolving around the UR-robots’ universe will continue to be provided through Universal Robots’ established network of distribution partners. In this way, distributors also benefit from this central platform, where they can both offer and access applications developed specifically for the use with UR robots. Universal Robots+ is the toolbox that tailors the optimal solutions for their individual customer needs.

Entering the Universal Robots+ Community

Developers need only complete a few steps to get their application solutions featured in the Universal Robots+ showroom. Registration for developers is free in the +YOU community forum where developers can submit their application ideas. In order to become a member of the +YOU community, the following conditions must be met:

  • Submission of a first draft detailing which type of capabilities is being developed. The following categories of URCaps can be chosen:
    • End-effectors:All types of end-of-arm-tooling (EOAT) such as grippers, force-torque-sensors, screwdrivers, and many more.
    • Accessory components:hardware products, which do not belong into the category of end-effectors – for instance, cable guidance, protective covers, communication modules, vision systems, HMI-panels, etc.
    • Software:These are either software plug-ins, which have been developed with the URCaps Software Development Kit (SDK), PC programs, for example, for the simulation of robot systems or programming, or UR-Library Plug-ins for the software of third parties such as the PLC programming suite.
  • Moreover, the developer needs to offer an established support service with a response time of maximum 24 hours on week days.
  • The developers must present a website with valid contact data.

After verification of the URCaps by Universal Robots, the developers will receive access to the +YOU online forum, where they can exchange questions and ideas. In addition, all members of the community will receive access to the company-internal developer support, which will assist (if necessary) in developing a market mature application. Additionally, the URCaps Software Development Kit can be downloaded free-of-charge.

 

First URCaps developed

The first approved capabilities developed by the developer community will accompany the Universal Robots+ launch at AUTOMATICA. One new URCap is the vision-guided Pick & Place solution of Robotiq, the Canadian manufacturer of flexible robot grippers and sensors. Samuel Bouchard, CEO of Robotiq, explains: “The UR robot arms can be equipped with our new camera and vision system and deployed right into assembly within five minutes. There is no need for an external computer to set up, program, or operate the camera. Everything can be done within the robot’s user interface. In developing this solution, we managed to meet the need of Universal Robots and our customers demanding an easier and faster implementation of a camera and vision system that can be deployed by anyone.”

Software release reduces implementation time

Alongside the launch of Universal Robots+, a new update for the robot arms’ operating software has been published. The new release (Software Version 3.3) includes updates such as the Profinet IO device functionality. The new compatibility with Profinet protocols opens up numerous additional areas of deployment and activities for robots. “A key feature of the update supporting the Universal Robots+ platform is the ability for providers to now offer solutions that interface seamlessly with the UR software,” says Østergaard.

Until now, the software enabling communication between developer applications and the UR robot arms had to be implemented by using relatively complex script code, which is time consuming and a difficult task for the majority of end users to handle. As the Software Version 3.3 now consists in parts of open source software, the developers can implement their software as an add-on, reducing the time needed for implementation at the end customer’s premises significantly, thus reducing both price and potential risks.

Availability

Universal Robots+ and the +YOU forum are accessible online from today in English. The first URCaps are already on display in the Universal Robots+ Showroom.

UR+ 2

About Universal Robots

Universal Robots is the result of many years of intensive research at Denmark’s successful robot cluster, which is located in Odense, Denmark. The company was co-founded in 2005 by the company’s CTO, Esben Østergaard, who wanted to make robot technology accessible to all by developing small, user-friendly, reasonably priced, flexible industrial robots that are safe to work  with and  on their own can be used to  streamline processes in the industry. The product portfolio includes the collaborative UR3, UR5 and UR10 robotic arms named after their payload in kilos. Since the first UR robot launched in December 2008, the company has experienced considerable growth with the user-friendly robots now sold in more than 50 countries worldwide. At just 195 days, the average payback period for UR robots is the fastest in the industry. The company, a part of Boston-based Teradyne Inc., is headquartered in Odense and has subsidiaries and regional offices in the U.S., Spain, Germany, Singapore, Czech Republic, India, and China. Universal Robots has more than 270 employees worldwide. Learn more at: www.universal-robots.com, www.universal-robots.com/plus/ and on the company-owned blog.

RoboCup: The world comes to Leipzig

It is the meeting place of the international research elite. From 30 June to 3 July, 3,500 participants from more than 45 countries and regions will be in Leipzig for RoboCup. Many of them have been a part of the global community for years. And they are all excited to engage in an inspiring dialogue on the current state of robotics.

RoboCupMajor

b-it-bots, Hochschule Bonn-Rhein-Sieg, Sankt Augustin, Germany

Liga: [email protected] und [email protected]

“We have participated in RoboCup since 2012. “After first competing in [email protected], we added [email protected] to our list of competitions in 2012. With our 16 team colleagues – all of whom are studying Autonomous Systems – we take on the RoboCup challenge every year. In 2009, we were the [email protected] world champion, and won second place in [email protected] in 2014. What is so special about this event: Our team members are from all corners of the globe, including Mexico, India, Congo, Ukraine, Pakistan, Canada and Vietnam, and we all practice the idea of RoboCup. We look forward to an inspiring environment with the opposing teams, some of which are also close friends.”www.b-it-bots.de

Nao-Team, Hochschule für Technik, Wirtschaft und Kultur, Leipzig, Germany

Liga: RoboCup Standard Platform League

“Our team consists of 17 informatics students. We have been enthusiastic participants of RoboCup for years, and look forward to welcoming the competition to Leipzig this year. At RoboCup, we use innovation and creative software to push hardware to its limits – something that motivates us every year.” http://htwk-robots.de

Tech United Eindhoven, Eindhoven University, Eindhoven, Netherlands

Liga: Soccer, Midlle Size League

“We have been coming to RoboCup since 2005 – with much success. In the Middle Size league, we have always reached the finals in the past few years, and even won the coveted trophy in 2012 and 2014. What is so special about RoboCup? Despite its competitive character, everyone is working on the same goal – to promote research in robotics. The community spirit is really noticeable!” www.facebook.com/techunited

UT Austin Villa, University of Texas, Austin, USA

Liga: Soccer, 3D Simulation League

“We have competed at RoboCup for more than ten years. Participating in different RoboCup leagues since 2003, we won the 3D Simulation League title four times in the past five years. 3D simulation unites robotics, multiagent systems and artificial intelligence – something that really motivates us. RoboCup is an excellent opportunity to meet up with friends and colleagues and talk about the newest results, share ideas and test the latest advances.”

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

WrightEagles, University of Science and Technology of China, Hefei, China

Liga: [email protected]

“We were the first Chinese team to compete at RoboCup in 2009. We now have 15 students who have been competing for the top spots in the [email protected] league for several years, and we won the title in 2014. What we find exciting about RoboCup? During the event, members have an opportunity to advance their technologies and test their inventions in real life. At the end, what counts is not only the ranking, but the insights that have been gained.”http://wrighteagle.org/en/robocup/atHome/

Bit-Bots, Universität Hamburg, Hamburg, Germany

Liga: Soccer, Humanoid KidSize

“We have competed in RoboCup’s Humanoid KidSize league since 2012. Our team consists of 17 members. We have already been able to reach the top spots at the RoboCup German Open and IranOpen several times. RoboCup is a wonderful opportunity for gaining practical experience as part of our academic course of studies. We are very excited to discuss the newest robots with the other teams in Leipzig.” www.bit-bots.de

Solidus, Höhere Fachschule für Technik, Mitteland, Switzerland

Liga: RoboCup Logistics

“We started competing at RoboCup in 2010. Last year, our nine-member team garnered the second place. For us, RoboCup is the ideal setting for networking, exchanging ideas and expanding our social and technical competence.”https://www.facebook.com/hftmrobotics

Hector, Technische Universität Darmstadt, Darmstadt, Germany

Liga: RoboCup Rescue

“We have participated in the RoboCupRescue league since 2009. The objective of this league is to search for buried victims in simulated disaster scenarios – an exciting task, since these technologies are supposed to be used in real life very soon. Our autonomous rescue robots already achieved some success in this area, and we have won the “Best in Class Autonomy” award in every one of the last four years. In 2014, we were the first team with a focus on autonomy that won the world championship title in Brazil. Therefore we will work hard to again achieve a top ranking in the “home game” in Leipzig. We are excited about RoboCup because it gives us an opportunity to test our robots at a world class level. The intensive exchange with the other teams is another exciting aspect of the world championships.“www.teamhector.de

RoboCupJunior

FRT – FIRST RoboCup, Alexander von Humboldt Gymnasium, Berlin, Germany

Liga: Soccer

“Our team was created in 2006, and has competed at many robotics world championships in the RoboCupJunior Soccer leagues. This year, we became the German champion, and are of course looking forward to Leipzig. Our team is characterized by its passion and friendships. We look forward to exciting days!“ www.frtrobotik.de

RoboCup at a glance

Participants: approx. 3,500 from 45 countries

Junior participants: 1,155

Major participants: 1,540

Volunteers: 248

Amazon Picking Challenge: 100 participants

RoboCamp: 160 participants

Representatives of the RoboCup Community: approx. 300 participants

Home geographical regions Egypt, Argentina, Australia, Belgium, Brazil

of the participants: Chile, China, Germany, Ivory Coast, Estonia, France, United Kingdom, India, Indonesia, Iran, Ireland, Israel, Italy, Japan, Canada, Columbia, Croatia, Macau, Mexico, Netherlands, Austria, Pakistan, Panama, Portugal, Romania, Russia, Switzerland, Sweden, Singapore, Slovakia, Slovenia, Spain, South Korea, Taiwan, Thailand, Turkey, Hungary, Uruguay, USA

Geographical regions with Germany (620), Iran (356), China (227), Japan (230),

the most participants: USA (162)

Participants who have travelled University of New South Wales, Sydney

the longest way: (Air-line distance: 16,195.25 km)

About RoboCup

RoboCup is the leading and most diverse competition for intelligent robots, and one of the world’s most important technology events in research and training. The World Cup of robots combines a variety of interdisciplinary problems from robotics, artificial intelligence, informatics, as well as electrical and mechanical engineering, among others. As the central discipline, robots play soccer in different leagues. Additional visionary application disciplines, such as intelligent robots as assistants for rescue missions, in households and in industrial production have been added during the last few years. The vision of the RoboCup Federation: That autonomous humanoid robots beat the reigning soccer world champion in 2050. The 20th RoboCup will be held in Leipzig from 30 June to 4 July 2016. More than 500 teams from 40 countries with 3,500 participants are expected to compete at this event. In addition to the Global Sponsors of the RoboCup (SoftBank Robotics, Festo, Flower Robotics, MathWorks), the 2016 world championships are also supported by Siemens (Gold Sponsor), Amazon Robotics, Festo, KUKA (Silver Sponsors), Schenker, TUXEDO Computers (Hardware Partners), HARTING, Arbeitgeberverband Gesamtmetall / think ING, S&P Sahlmann (Bronze Sponsors), DHL (Logistics Partner) as well as arvato, Donaubauer, Flughafen Leipzig/Halle, Metropolregion Mitteldeutschland and Micro-Epsilon (Friends).

RoboCup Leipzig: Using small robots to learn for the big robots

Most people know robots as machines that accurately perform previously defined processes. Their advantage over other industrial equipment is that they can be used in a variety of situations due to their considerable flexibility. To further increase this level of flexibility, Augsburg-based automation specialist KUKA relies on an intensive exchange with the global robotics community. Competitions such as RoboCup translate tasks from the factory of the future into scientific challenges for the researchers. In this way, competition among the teams gives rise to innovative solutions that are needed to further enhance production towards Industry 4.0. At Leipziger Messe, these approaches can be experienced live at RoboCup from 30 June to 3 July.

A third hand for humans

Even now, increasingly intelligent robots play an important part in modern factories. De-mographic change and steadily growing demand for higher productivity and quality, along with lower costs, have the effect of raising the requirements for future robot-based auto-mation, particularly in the installation area. As an ageing workforce is supported by robotic colleagues, it becomes very important to ensure the safe co-existence of workers and robots, and to develop a correspondingly sensitive robot assistant.

KUKA’s light construction robot LBR iiwa (intelligent industrial work assistant) demonstrates how the knowledge transfer from research and competitions such as RoboCup to the actual production environment works precisely for these types of challenges. The robot’s arm is very sensitive, and therefore optimally suited for this type of task, turning it into the equivalent of a third human hand. The robot can handle fragile and sensitive objects, detects the position of the components to be used, and installs them with the required amount of force. In this way, production rejects or a collisions can be avoided. “Today’s production environment requires a maximum amount of flexibility and transformation due to steadily increasing product and model diversity. LBR iiwa can meet these requirements and thus enables processes that were hitherto inconceivable in terms of automation,” says Dr. Rainer Bischoff, Manager of Group Research at KUKA, and explains: “Its sensors and control technology also make it so safe that humans and robots can work alongside each other without having to be separated by protective walls.”

Flexible through mobility

The considerable demands on robots are especially evident in the area of mobility. That is because stationary robots in particular quickly reach their limit. Dr. Bischoff: “Industrial production in the future will require new, modular, versatile and above all mobile production concepts.” For this reason, KUKA has equipped its LBR iiwa with an autonomous navigating platform and created the KMR iiwa (KMR = KUKA Mobile Robotics), a new intelligent and mobile helper that enables direct, autonomous and flexible collaboration between humans and robots. With its high-performance battery, autonomous navigation, ability to position exactly to the millimeter, and its modular design, the KMR iiwa is an in-dustrial production assistant for many logistics and production processes.

Interface for the future of robotics

Since each innovation always starts with a first small step, KUKA will bring the youBot to RoboCup on the Leipziger Messe exhibition grounds. The robot is an omni-directional mobile platform that features a five-axis robot arm with a two-finger grip. The device can be used to realize control systems and application ideas. Its biggest advantage: The youBot can be run with many open source software packages and other software (C++ API, ROS, Orocos, LabView and many more). “The KUKA youBot offers researchers, teachers and students, as well as research and development departments in industry a hardware basis for trying new things and for scaling the insights to other applications. In this way, the KUKA youBot can be used to research the important issues of the factory of the future on the way to Industry 4.0 on a smaller scale,” explains Dr. Bischoff.

Speaking of Industry 4.0: Visitors can experience the current state of research for the fac-tory of the future at the RoboCup competitions in the [email protected] league, in the ini-tiation of which KUKA played a key role. Differently from the soccer-playing and service robotics-oriented competitions, the participants in this competition focus on researching and developing the use of robots in industrial settings. In this context, robots are supposed to perform complex tasks in collaboration with humans, e.g. in production, automation or general logistics processes. Real-life industrial challenges are supposed to form the basis for robust mobile manipulation, which can be scaled and therefore can be used on a much larger scale.

To ensure even better comparability for competition participants, and in order to run the competitions in several rounds at different times and in different locations (similar to the Champions League in soccer), KUKA initiated the establishment of the European Robotics League with other science partners and with the help of subsidies from the European Commission. The RoboCup in Leipzig marks the official starting point for this European league which – using the three robotics areas industry, services and rescue, all of which have societal relevance – will give rise to ground-breaking developments, even better training for tomorrow’s engineers and computer scientists and higher acceptance in the population for supportive robot technologies. Dr. Bischoff: “Constant competition is a key prerequisite for innovation. RoboCup in Leipzig is the perfect interface between the current state of development and the pioneering solutions for the challenges of the future.”

About RoboCup

RoboCup is the leading and most diverse competition for intelligent robots, and one of the world’s most important technology events in research and training. The World Cup of robots combines a variety of interdisciplinary problems from robotics, artificial intelligence, informatics, as well as electrical and mechanical engineering, among others. As the central discipline, robots play soccer in different leagues. Additional visionary application disciplines such as intelligent robots as assistants for rescue missions, in households and in industrial production have been added during the last few years. The vision of the RoboCup Federation: That autonomous humanoid robots beat the reigning soccer world champion in 2050. The 20th RoboCup will be held in Leipzig from 30 June to 4 July 2016. More than 500 teams from 40 countries with 3,500 participants are expected to compete at this event. The 2016 world championships is supported by global RoboCup sponsors (SoftBank Robotics, Festo, Flower Robotics, MathWorks) as well as Siemens (Gold Sponsor), Amazon Robotics, Festo, KUKA (Silver Sponsors), Schenker, TUXEDO Computers (Hardware Partner), HARTING, Arbeitgeberverband Gesamtmetall / think ING, S&P Sahlmann (Bronze Sponsors), DHL (Logistics Partner) and arvato, Donaubauer, Flughafen Leipzig/Halle, Metropolregion Mitteldeutschland und Micro-Epsilon (Friends).

AUTOMATICA 2016: Robotics – Introducing a new robot generation

For the first time this year, all renowned robotics manufacturers with innovations across the board will be at AUTOMATICA in Munich from June 21 to 24. Gone are the days when progress was defined by improvements in details. This time solutions are signaling a new era of automation with new approaches that do justice to the demands of human-robot collaboration (MRC) and Industry 4.0.

The robotics business around the world is booming. The World Robot Association IFR reported a global sales record of eight percent in 2015 in the industrial robot sector. The number of industrial robots sold worldwide reached the mark of 240,000 units for the first time.

„The worldwide sales of industrial robots in 2015 confirmed that we are in very exciting times for the robot industry,“ Per Vegard Nerseth, Managing Director at ABB Robotics, stated. „With the start into 2016, the traditional drivers in our industry are being complemented by a huge demand for solutions in the Internet of Things (IoT) as well as the services & people areas. I believe that this development will result in a new record year.“

MRC: A new generation of robots is ready for the market
Collaborating robots are paving a revolutionary new way for SMEs to automate their production on an optimum technical level and consequently secure their competitive position while cutting costs. Manufacturers are taking different approaches in developing their collaborative robots. While one faction, including ABB, Kuka, Universal Robots, Yaskawa and Co. relies on special machines for MRC, Stäubli and Fanuc design their standard robots for MRC applications. A big advantage for AUTOMATICA visitors: All major robot manufacturers are represented at the trade fair, which enables a direct comparison of these solutions.

Per Vegard Nerseth, Managing Director of ABB Robotics, expects a new record year for robotics.

Photo: ABB


Industry 4.0 and MRC

Stäubli will highlight the performance of his new TX2 six-axle series in a variety of demonstration applications at its largest ever AUTOMATICA booth. In a realistic smart factory, different TX2 models in several linked cells put their Industry 4.0 compatibility as well as their collaborative skills to the test. The mobile, autonomous robot system HelMo will be employed for the first time, which makes mobile use possible for the TX2 six-axle robot.

AUTOMATICA is the most important trade fair event this year for Gerald Vogt, Managing Director of Stäubli Robotics.

Photo: Stäubli

You can also see the major trends in robotics of highly flexible and tightly networked I4.0 production concepts, intuitive operation of robots and MRC solutions at Kuka. In networked production installed at its booth, Kuka is linking its products designed for Industry 4.0, including the mobile KMR iiwa and the Swisslog shelving system Cyclone Carrier, a prime example of a modern production concept. Via the Swisslog software Warehouse Manager WM 6, all components of the smart factory are able to communicate with each other and provide information about the respective order status.

In addition to solutions for networked production, Kuka is exhibit-ing new six-axis robots, including the small robot KR 3 Agilus.

Photo: Kuka Roboter


Green „CR World“ on the „Yellow Highway“

With 24 system partners, Fanuc is exhibiting the full range of robotics on the „Yellow Highway”. New features include the collaborative robot CR 7iA and the heavyweight M-2000iA with a payload of 2,300 kg. Another highlight is the „Green CR World“, in which simple application examples as well as unusual use ideas for collaborative robots can be seen. There is also plenty of space for the ideas and solutions of system integrators on the 3,000 square meter booth. New integrators have joined the partners of the first AUTOMATICA fairs. „As a result, we expect a record number of participants this year,“ Olaf Kramm, Managing Director of Fanuc Germany, stated with obvious pleasure; he will be accompanied by his international team at AUTOMATICA.

The importance of AUTOMATICA as platform for the robot market and the outstanding success of FANUC Germany have aroused the curiosity of Dr. Yoshiharu Inaba. The President and CEO of FANUC Corporation wants to get a direct overview of the German and European markets, as well as meet customers and system integrators at the „Yellow Highway”. For this reason the top management of FANUC Corporation will visit the AUTOMATICA in Munich for the first time.

The basis of the new collaborative Fanuc CR 7iA is an LR Mate 200iD with 7 kg carrying load.

Photo: Fanuc

Yaskawa is also betting on the known fashionable topics, but it also has new robot on board. Bruno Schnekenburger, Division Director Robotics at Yaskawa Europe, stated: “We are going to introduce a newly developed model for MRC applications for the first time in Europe at AUTOMATICA with the Motoman HC10. The robot is extremely slim, so it can be integrated optimally into cramped spaces.“  The new GP series with the Motoman GP7 and GP8 also has a similar slim design. These robots will score with speed, ranges and interfaces for integration into automation environments on the Industry 4.0 level.

The collaborative robot Motoman HC10 from Yaskawa is celebrating its European premiere.

Photo: Yaskawa


AUTOMATICA shows the complete range of automation

In line with current requirements in the digital manufacturing era, Fraunhofer IPA is presenting different exhibits covering the fields of people at the workplace, products and automation as well as IT infrastructure and networking. Consequently, they demonstrate the added value of production in the sense of Industry 4.0.

In addition to the hot topics, AUTOMATICA is also showing the world of conventional robotics from vision sensors to spot welding guns and all the way to heavy-duty robots. „AUTOMATICA illuminates all facets of automation, and all major exhibitors of the industry are represented. Consequently, this fair is the most important event this year for many exhibitors. It will show the extent to which visions of future automation have become reality,“ Gerald Vogt, Managing Director of Stäubli Robotics, stated.

Industry 4.0 and MRK solutions will be the focus at the booth of the Fraunhofer IPA.

Photo: IPA

Low Cost Walking Robot Makes It Easy To Get Into Robotics

The mePed is a robot kit that was designed from the ground up to be an affordable, easy to build robot for beginners and experts alike.

Spierce Technologies announced today that it is raising funds via a crowdfunding campaign on Kickstarter to finish development and drive down the cost of their flagship walking robot, the mePed. The company has set out to raise at least $5,000 to fund the first batch of mePed kits and give them enough orders to negotiate better pricing and make the kits more affordable for everyone.

The mePed is a four legged quadruped robot that comes in kit form which the user assembles using the included tools. Out of the box, it’s not much more than just a remote control toy but what make the mePed robot special is that it is completely open source and programmable. The source code used to make the mePed work is pre-programmed on the robots controller from the factory. This code can be modified by the user to make the robot do almost anything from navigating mazes, avoiding obstacles, dancing, waving, or even finding a fire and putting it out with the use of additional sensors.

Making low cost, high quality robot kits accessible to as many people as possible is the driving force behind the mePed Kickstarter campaign. When most walking robots cost upwards of $200 or more, with a successful Kickstarter campaign, Spierce Technologies can bring the mePed to market for less than $100.

The mePed kit includes everything needed to assemble a fully functioning, programmable robot. In addition to the robot body and servo motors, the kit include an Infrared Remote for giving the robot commands, an Ultrasonic Range Sensor for measuring the distance from objects in front of the robot, an Arduino compatible micro controller or the brains of the mePed, as well as the nuts, bolts, and wrenches needed to assemble the kit. The user only needs to supply 4 AA batteries.

https://www.kickstarter.com/projects/1881661007/meped-the-mini- quadruped-mobile-robot